Rigidity of Compact Fuchsian Manifolds with Convex Boundary

A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that a compact Fuchsian manifold with convex boundary is uniquely determined by the induced path metric on $S_g \times \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-02, Vol.2023 (3), p.1959-2094
1. Verfasser: Prosanov, Roman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2094
container_issue 3
container_start_page 1959
container_title International mathematics research notices
container_volume 2023
creator Prosanov, Roman
description A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that a compact Fuchsian manifold with convex boundary is uniquely determined by the induced path metric on $S_g \times \{1\}$. We do not put further restrictions on the boundary except convexity.
doi_str_mv 10.1093/imrn/rnab270
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnab270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnab270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-5d2f22fb9682e65fddd82d5cbf781c2b55095e37d48bc23709a67440ba100fc33</originalsourceid><addsrcrecordid>eNotj91KAzEUhIMoWKt3PkAewLUnJ5tNFq90sSpUBNHrJT8bG2mzJdlq-_ZusVczMMwwHyHXDG4Z1HwW1inOUtQGJZyQCauULABLeTp6kLyQNapzcpHzNwACU3xC7t7DV3Bh2NPe06Zfb7Qd6HxrlznoSF91DL5fuUx_w7Ac8_jT7ehDv41Op_0lOfN6lburo07J5_zxo3kuFm9PL839orDIxVAIhx7Rm7pS2FXCO-cUOmGNl4pZNEJALTouXanM2JBQ60qWJRjNALzlfEpu_ndt6nNOnW83KazHAy2D9gDeHsDbIzj_A4ZoTZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigidity of Compact Fuchsian Manifolds with Convex Boundary</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Prosanov, Roman</creator><creatorcontrib>Prosanov, Roman</creatorcontrib><description>A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that a compact Fuchsian manifold with convex boundary is uniquely determined by the induced path metric on $S_g \times \{1\}$. We do not put further restrictions on the boundary except convexity.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnab270</identifier><language>eng</language><ispartof>International mathematics research notices, 2023-02, Vol.2023 (3), p.1959-2094</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-5d2f22fb9682e65fddd82d5cbf781c2b55095e37d48bc23709a67440ba100fc33</citedby><cites>FETCH-LOGICAL-c235t-5d2f22fb9682e65fddd82d5cbf781c2b55095e37d48bc23709a67440ba100fc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Prosanov, Roman</creatorcontrib><title>Rigidity of Compact Fuchsian Manifolds with Convex Boundary</title><title>International mathematics research notices</title><description>A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that a compact Fuchsian manifold with convex boundary is uniquely determined by the induced path metric on $S_g \times \{1\}$. We do not put further restrictions on the boundary except convexity.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotj91KAzEUhIMoWKt3PkAewLUnJ5tNFq90sSpUBNHrJT8bG2mzJdlq-_ZusVczMMwwHyHXDG4Z1HwW1inOUtQGJZyQCauULABLeTp6kLyQNapzcpHzNwACU3xC7t7DV3Bh2NPe06Zfb7Qd6HxrlznoSF91DL5fuUx_w7Ac8_jT7ehDv41Op_0lOfN6lburo07J5_zxo3kuFm9PL839orDIxVAIhx7Rm7pS2FXCO-cUOmGNl4pZNEJALTouXanM2JBQ60qWJRjNALzlfEpu_ndt6nNOnW83KazHAy2D9gDeHsDbIzj_A4ZoTZU</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Prosanov, Roman</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230208</creationdate><title>Rigidity of Compact Fuchsian Manifolds with Convex Boundary</title><author>Prosanov, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-5d2f22fb9682e65fddd82d5cbf781c2b55095e37d48bc23709a67440ba100fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prosanov, Roman</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prosanov, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of Compact Fuchsian Manifolds with Convex Boundary</atitle><jtitle>International mathematics research notices</jtitle><date>2023-02-08</date><risdate>2023</risdate><volume>2023</volume><issue>3</issue><spage>1959</spage><epage>2094</epage><pages>1959-2094</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that a compact Fuchsian manifold with convex boundary is uniquely determined by the induced path metric on $S_g \times \{1\}$. We do not put further restrictions on the boundary except convexity.</abstract><doi>10.1093/imrn/rnab270</doi><tpages>136</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2023-02, Vol.2023 (3), p.1959-2094
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnab270
source Oxford University Press Journals All Titles (1996-Current)
title Rigidity of Compact Fuchsian Manifolds with Convex Boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20Compact%20Fuchsian%20Manifolds%20with%20Convex%20Boundary&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Prosanov,%20Roman&rft.date=2023-02-08&rft.volume=2023&rft.issue=3&rft.spage=1959&rft.epage=2094&rft.pages=1959-2094&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnab270&rft_dat=%3Ccrossref%3E10_1093_imrn_rnab270%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true