Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields
We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surject...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-12, Vol.2022 (24), p.19354-19398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19398 |
---|---|
container_issue | 24 |
container_start_page | 19354 |
container_title | International mathematics research notices |
container_volume | 2022 |
creator | Javanpeykar, Ariyan Rousseau, Erwan |
description | We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surjective, has connected fibres, and has no multiple fibres in codimension one. |
doi_str_mv | 10.1093/imrn/rnab255 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnab255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnab255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-83f0ff7a595df537d3f782953a4b185c951dcb86fc9b37a79931bac0abdea6003</originalsourceid><addsrcrecordid>eNotkM1KAzEcxIMoWKs3HyAP4Npk02ySYyluFSoV8eO4_vOFkd1sSbZC395d7GmGYWYOP4RuKbmnRLFF6FJcpAi65PwMzWglRUHKpTgfPRGsEKqUl-gq5x9CSkIlm6GvVashuuzwM-wzhmhxfYgWOhcHaPEm9Ycx7j3-gBTcEFzGn2H4HtvxiF9hCH0cay99iEPGu1-XprmZYlwH19p8jS48tNndnHSO3uuHt_Vjsd1tntarbWFKxodCMk-8F8AVt54zYZkXslScwVJTyY3i1BotK2-UZgKEUoxqMAS0dVARwubo7v_XpD7n5HyzT6GDdGwoaSY6zUSnOdFhf0mKWz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Javanpeykar, Ariyan ; Rousseau, Erwan</creator><creatorcontrib>Javanpeykar, Ariyan ; Rousseau, Erwan</creatorcontrib><description>We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surjective, has connected fibres, and has no multiple fibres in codimension one.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnab255</identifier><language>eng</language><ispartof>International mathematics research notices, 2022-12, Vol.2022 (24), p.19354-19398</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-83f0ff7a595df537d3f782953a4b185c951dcb86fc9b37a79931bac0abdea6003</citedby><cites>FETCH-LOGICAL-c235t-83f0ff7a595df537d3f782953a4b185c951dcb86fc9b37a79931bac0abdea6003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Javanpeykar, Ariyan</creatorcontrib><creatorcontrib>Rousseau, Erwan</creatorcontrib><title>Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields</title><title>International mathematics research notices</title><description>We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surjective, has connected fibres, and has no multiple fibres in codimension one.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEcxIMoWKs3HyAP4Npk02ySYyluFSoV8eO4_vOFkd1sSbZC395d7GmGYWYOP4RuKbmnRLFF6FJcpAi65PwMzWglRUHKpTgfPRGsEKqUl-gq5x9CSkIlm6GvVashuuzwM-wzhmhxfYgWOhcHaPEm9Ycx7j3-gBTcEFzGn2H4HtvxiF9hCH0cay99iEPGu1-XprmZYlwH19p8jS48tNndnHSO3uuHt_Vjsd1tntarbWFKxodCMk-8F8AVt54zYZkXslScwVJTyY3i1BotK2-UZgKEUoxqMAS0dVARwubo7v_XpD7n5HyzT6GDdGwoaSY6zUSnOdFhf0mKWz0</recordid><startdate>20221217</startdate><enddate>20221217</enddate><creator>Javanpeykar, Ariyan</creator><creator>Rousseau, Erwan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221217</creationdate><title>Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields</title><author>Javanpeykar, Ariyan ; Rousseau, Erwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-83f0ff7a595df537d3f782953a4b185c951dcb86fc9b37a79931bac0abdea6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javanpeykar, Ariyan</creatorcontrib><creatorcontrib>Rousseau, Erwan</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javanpeykar, Ariyan</au><au>Rousseau, Erwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields</atitle><jtitle>International mathematics research notices</jtitle><date>2022-12-17</date><risdate>2022</risdate><volume>2022</volume><issue>24</issue><spage>19354</spage><epage>19398</epage><pages>19354-19398</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surjective, has connected fibres, and has no multiple fibres in codimension one.</abstract><doi>10.1093/imrn/rnab255</doi><tpages>45</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2022-12, Vol.2022 (24), p.19354-19398 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnab255 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Albanese%20Maps%20and%20Fundamental%20Groups%20of%20Varieties%20With%20Many%20Rational%20Points%20Over%20Function%20Fields&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Javanpeykar,%20Ariyan&rft.date=2022-12-17&rft.volume=2022&rft.issue=24&rft.spage=19354&rft.epage=19398&rft.pages=19354-19398&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnab255&rft_dat=%3Ccrossref%3E10_1093_imrn_rnab255%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |