Landau–Ginzburg/Calabi–Yau Correspondence for a Complete Intersection via Matrix Factorizations

Abstract By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family of isolated singularities fibered over a projective line. In recent years Fan, Jarvis, and Ruan have defined quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Int.Math.Res.Not 2022-07, Vol.2022 (15), p.11796-11863
1. Verfasser: Zhao, Yizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11863
container_issue 15
container_start_page 11796
container_title Int.Math.Res.Not
container_volume 2022
creator Zhao, Yizhen
description Abstract By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family of isolated singularities fibered over a projective line. In recent years Fan, Jarvis, and Ruan have defined quantum invariants for singularities of this type, and Clader and Clader–Ross have provided an equivalence between these invariants and Gromov–Witten invariants of complete intersections, in this way quantum cohomology yields an identification of the cohomology groups of the Calabi–Yau and of the hybrid Landau–Ginzburg model. It is not clear how to relate this to the known isomorphism descending from derived equivalences (due to Segal and Shipman, and Orlov and Isik). We answer this question for Calabi–Yau complete intersections of two cubics.
doi_str_mv 10.1093/imrn/rnab044
format Article
fullrecord <record><control><sourceid>oup_hal_p</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnab044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnab044</oup_id><sourcerecordid>10.1093/imrn/rnab044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-950220a519ffaa61d3e5e5beddf02b8b7646d6858f9e23ac9d3ebafe483e3c683</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEstCxwekQ0iEHcd5OOUqYh9SEA0UVNHEscEoa0d2FsFW_AN_yJeQaFeUVDM698wUl5BLCrcUcjbTG2dmzmANcXxEJjTlWQhRnB0PO2QszPKIn5Iz798AIqCcTYgo0TS4_fn6Xmqzq7fuZVZgi7UeyDNug8I6J31nTSONkIGyLsABbrpW9jJYm146L0WvrQneNQb32Dv9ESxQ9NbpHY6BPycnClsvLw5zSp4Wd4_FKiwflutiXoaCsbwP8wSiCDChuVKIKW2YTGRSy6ZRENW8ztI4bVKecJXLiKHIB6FGJWPOJBMpZ1Nyvf_7im3VOb1B91lZ1NVqXlYjA5ZlMaTwTgf3Zu8KZ713Uv0dUKjGMquxzOpQ5qBf7XW77f43fwG_e3qq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Landau–Ginzburg/Calabi–Yau Correspondence for a Complete Intersection via Matrix Factorizations</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Zhao, Yizhen</creator><creatorcontrib>Zhao, Yizhen</creatorcontrib><description>Abstract By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family of isolated singularities fibered over a projective line. In recent years Fan, Jarvis, and Ruan have defined quantum invariants for singularities of this type, and Clader and Clader–Ross have provided an equivalence between these invariants and Gromov–Witten invariants of complete intersections, in this way quantum cohomology yields an identification of the cohomology groups of the Calabi–Yau and of the hybrid Landau–Ginzburg model. It is not clear how to relate this to the known isomorphism descending from derived equivalences (due to Segal and Shipman, and Orlov and Isik). We answer this question for Calabi–Yau complete intersections of two cubics.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnab044</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Mathematical Physics ; Physics</subject><ispartof>Int.Math.Res.Not, 2022-07, Vol.2022 (15), p.11796-11863</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-950220a519ffaa61d3e5e5beddf02b8b7646d6858f9e23ac9d3ebafe483e3c683</citedby><cites>FETCH-LOGICAL-c339t-950220a519ffaa61d3e5e5beddf02b8b7646d6858f9e23ac9d3ebafe483e3c683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,886,1585,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03774060$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yizhen</creatorcontrib><title>Landau–Ginzburg/Calabi–Yau Correspondence for a Complete Intersection via Matrix Factorizations</title><title>Int.Math.Res.Not</title><description>Abstract By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family of isolated singularities fibered over a projective line. In recent years Fan, Jarvis, and Ruan have defined quantum invariants for singularities of this type, and Clader and Clader–Ross have provided an equivalence between these invariants and Gromov–Witten invariants of complete intersections, in this way quantum cohomology yields an identification of the cohomology groups of the Calabi–Yau and of the hybrid Landau–Ginzburg model. It is not clear how to relate this to the known isomorphism descending from derived equivalences (due to Segal and Shipman, and Orlov and Isik). We answer this question for Calabi–Yau complete intersections of two cubics.</description><subject>Mathematical Physics</subject><subject>Physics</subject><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEstCxwekQ0iEHcd5OOUqYh9SEA0UVNHEscEoa0d2FsFW_AN_yJeQaFeUVDM698wUl5BLCrcUcjbTG2dmzmANcXxEJjTlWQhRnB0PO2QszPKIn5Iz798AIqCcTYgo0TS4_fn6Xmqzq7fuZVZgi7UeyDNug8I6J31nTSONkIGyLsABbrpW9jJYm146L0WvrQneNQb32Dv9ESxQ9NbpHY6BPycnClsvLw5zSp4Wd4_FKiwflutiXoaCsbwP8wSiCDChuVKIKW2YTGRSy6ZRENW8ztI4bVKecJXLiKHIB6FGJWPOJBMpZ1Nyvf_7im3VOb1B91lZ1NVqXlYjA5ZlMaTwTgf3Zu8KZ713Uv0dUKjGMquxzOpQ5qBf7XW77f43fwG_e3qq</recordid><startdate>20220726</startdate><enddate>20220726</enddate><creator>Zhao, Yizhen</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20220726</creationdate><title>Landau–Ginzburg/Calabi–Yau Correspondence for a Complete Intersection via Matrix Factorizations</title><author>Zhao, Yizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-950220a519ffaa61d3e5e5beddf02b8b7646d6858f9e23ac9d3ebafe483e3c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematical Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yizhen</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Int.Math.Res.Not</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landau–Ginzburg/Calabi–Yau Correspondence for a Complete Intersection via Matrix Factorizations</atitle><jtitle>Int.Math.Res.Not</jtitle><date>2022-07-26</date><risdate>2022</risdate><volume>2022</volume><issue>15</issue><spage>11796</spage><epage>11863</epage><pages>11796-11863</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family of isolated singularities fibered over a projective line. In recent years Fan, Jarvis, and Ruan have defined quantum invariants for singularities of this type, and Clader and Clader–Ross have provided an equivalence between these invariants and Gromov–Witten invariants of complete intersections, in this way quantum cohomology yields an identification of the cohomology groups of the Calabi–Yau and of the hybrid Landau–Ginzburg model. It is not clear how to relate this to the known isomorphism descending from derived equivalences (due to Segal and Shipman, and Orlov and Isik). We answer this question for Calabi–Yau complete intersections of two cubics.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnab044</doi><tpages>68</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof Int.Math.Res.Not, 2022-07, Vol.2022 (15), p.11796-11863
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnab044
source Oxford University Press Journals All Titles (1996-Current)
subjects Mathematical Physics
Physics
title Landau–Ginzburg/Calabi–Yau Correspondence for a Complete Intersection via Matrix Factorizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landau%E2%80%93Ginzburg/Calabi%E2%80%93Yau%20Correspondence%20for%20a%20Complete%20Intersection%20via%20Matrix%20Factorizations&rft.jtitle=Int.Math.Res.Not&rft.au=Zhao,%20Yizhen&rft.date=2022-07-26&rft.volume=2022&rft.issue=15&rft.spage=11796&rft.epage=11863&rft.pages=11796-11863&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnab044&rft_dat=%3Coup_hal_p%3E10.1093/imrn/rnab044%3C/oup_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnab044&rfr_iscdi=true