A Non-commutative Fejér Theorem for Crossed Products, the Approximation Property, and Applications
Abstract We prove that a locally compact group has the approximation property (AP), introduced by Haagerup–Kraus [ 21], if and only if a non-commutative Fejér theorem holds for its associated $C^*$- or von Neumann crossed products. As applications, we answer three open problems in the literature. Sp...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-02, Vol.2022 (5), p.3571-3601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3601 |
---|---|
container_issue | 5 |
container_start_page | 3571 |
container_title | International mathematics research notices |
container_volume | 2022 |
creator | Crann, Jason Neufang, Matthias |
description | Abstract
We prove that a locally compact group has the approximation property (AP), introduced by Haagerup–Kraus [
21], if and only if a non-commutative Fejér theorem holds for its associated $C^*$- or von Neumann crossed products. As applications, we answer three open problems in the literature. Specifically, we show that any locally compact group with the AP is exact. This generalizes a result by Haagerup–Kraus [
21] and answers a problem raised by Li [
27]. We also answer a question of Bédos–Conti [
4] on the Fejér property of discrete $C^*$-dynamical systems, as well as a question by Anoussis–Katavolos–Todorov [
3] for all locally compact groups with the AP. In our approach, we develop a notion of Fubini crossed product for locally compact groups and a dynamical version of the slice map property. |
doi_str_mv | 10.1093/imrn/rnaa221 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnaa221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnaa221</oup_id><sourcerecordid>10.1093/imrn/rnaa221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-256f5d24c1245fbc9166f11c2918f1ef27a240ca2bec9f293a0c2de6094796ba3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqWw4wDesUmoZ_LjeBlFtCBVwKKsI8ex1VRNHNkpokfiHFyMhHbNakb63ow-PULugT0CE9GiaV23cJ2UiHBBZpBmPGQY88txZzwKucDsmtx4v2MMGWTRjKicvtouVLZtD4Mcmk9Nl3r38-3oZqut0y011tHCWe91Td-drQ9q8AEdtprmfe_sV9OOZ7absl674RhQ2dVTtm_UX-JvyZWRe6_vznNOPpZPm-I5XL-tXop8HSoQfAgxSU1SY6wA48RUSkCaGgCFAjID2iCXGDMlsdJKGBSRZAprnTIRc5FWMpqT4PRXTXWdNmXvxnbuWAIrJ0HlJKg8CxrxhxNuD_3_5C-kLmpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Non-commutative Fejér Theorem for Crossed Products, the Approximation Property, and Applications</title><source>Oxford University Press Journals</source><creator>Crann, Jason ; Neufang, Matthias</creator><creatorcontrib>Crann, Jason ; Neufang, Matthias</creatorcontrib><description>Abstract
We prove that a locally compact group has the approximation property (AP), introduced by Haagerup–Kraus [
21], if and only if a non-commutative Fejér theorem holds for its associated $C^*$- or von Neumann crossed products. As applications, we answer three open problems in the literature. Specifically, we show that any locally compact group with the AP is exact. This generalizes a result by Haagerup–Kraus [
21] and answers a problem raised by Li [
27]. We also answer a question of Bédos–Conti [
4] on the Fejér property of discrete $C^*$-dynamical systems, as well as a question by Anoussis–Katavolos–Todorov [
3] for all locally compact groups with the AP. In our approach, we develop a notion of Fubini crossed product for locally compact groups and a dynamical version of the slice map property.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnaa221</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2022-02, Vol.2022 (5), p.3571-3601</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-256f5d24c1245fbc9166f11c2918f1ef27a240ca2bec9f293a0c2de6094796ba3</citedby><cites>FETCH-LOGICAL-c197t-256f5d24c1245fbc9166f11c2918f1ef27a240ca2bec9f293a0c2de6094796ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Crann, Jason</creatorcontrib><creatorcontrib>Neufang, Matthias</creatorcontrib><title>A Non-commutative Fejér Theorem for Crossed Products, the Approximation Property, and Applications</title><title>International mathematics research notices</title><description>Abstract
We prove that a locally compact group has the approximation property (AP), introduced by Haagerup–Kraus [
21], if and only if a non-commutative Fejér theorem holds for its associated $C^*$- or von Neumann crossed products. As applications, we answer three open problems in the literature. Specifically, we show that any locally compact group with the AP is exact. This generalizes a result by Haagerup–Kraus [
21] and answers a problem raised by Li [
27]. We also answer a question of Bédos–Conti [
4] on the Fejér property of discrete $C^*$-dynamical systems, as well as a question by Anoussis–Katavolos–Todorov [
3] for all locally compact groups with the AP. In our approach, we develop a notion of Fubini crossed product for locally compact groups and a dynamical version of the slice map property.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqWw4wDesUmoZ_LjeBlFtCBVwKKsI8ex1VRNHNkpokfiHFyMhHbNakb63ow-PULugT0CE9GiaV23cJ2UiHBBZpBmPGQY88txZzwKucDsmtx4v2MMGWTRjKicvtouVLZtD4Mcmk9Nl3r38-3oZqut0y011tHCWe91Td-drQ9q8AEdtprmfe_sV9OOZ7absl674RhQ2dVTtm_UX-JvyZWRe6_vznNOPpZPm-I5XL-tXop8HSoQfAgxSU1SY6wA48RUSkCaGgCFAjID2iCXGDMlsdJKGBSRZAprnTIRc5FWMpqT4PRXTXWdNmXvxnbuWAIrJ0HlJKg8CxrxhxNuD_3_5C-kLmpY</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Crann, Jason</creator><creator>Neufang, Matthias</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220223</creationdate><title>A Non-commutative Fejér Theorem for Crossed Products, the Approximation Property, and Applications</title><author>Crann, Jason ; Neufang, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-256f5d24c1245fbc9166f11c2918f1ef27a240ca2bec9f293a0c2de6094796ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crann, Jason</creatorcontrib><creatorcontrib>Neufang, Matthias</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crann, Jason</au><au>Neufang, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-commutative Fejér Theorem for Crossed Products, the Approximation Property, and Applications</atitle><jtitle>International mathematics research notices</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>2022</volume><issue>5</issue><spage>3571</spage><epage>3601</epage><pages>3571-3601</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract
We prove that a locally compact group has the approximation property (AP), introduced by Haagerup–Kraus [
21], if and only if a non-commutative Fejér theorem holds for its associated $C^*$- or von Neumann crossed products. As applications, we answer three open problems in the literature. Specifically, we show that any locally compact group with the AP is exact. This generalizes a result by Haagerup–Kraus [
21] and answers a problem raised by Li [
27]. We also answer a question of Bédos–Conti [
4] on the Fejér property of discrete $C^*$-dynamical systems, as well as a question by Anoussis–Katavolos–Todorov [
3] for all locally compact groups with the AP. In our approach, we develop a notion of Fubini crossed product for locally compact groups and a dynamical version of the slice map property.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnaa221</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2022-02, Vol.2022 (5), p.3571-3601 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnaa221 |
source | Oxford University Press Journals |
title | A Non-commutative Fejér Theorem for Crossed Products, the Approximation Property, and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-commutative%20Fej%C3%A9r%20Theorem%20for%20Crossed%20Products,%20the%20Approximation%20Property,%20and%20Applications&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Crann,%20Jason&rft.date=2022-02-23&rft.volume=2022&rft.issue=5&rft.spage=3571&rft.epage=3601&rft.pages=3571-3601&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnaa221&rft_dat=%3Coup_cross%3E10.1093/imrn/rnaa221%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnaa221&rfr_iscdi=true |