Virtual element methods for the obstacle problem

We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2020-01, Vol.40 (1), p.708-728
Hauptverfasser: Wang, Fei, Wei, Huayi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 1
container_start_page 708
container_title IMA journal of numerical analysis
container_volume 40
creator Wang, Fei
Wei, Huayi
description We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degrees of freedom are carefully chosen so that the stiffness matrix can be computed without actually computing the nonpolynomial functions. With this special design, VEMS can easily deal with complicated element geometries. In this paper we establish a priori error estimates of VEMs for the obstacle problem. We prove that the lowest-order ($k=1$) VEM achieves the optimal convergence order, and suboptimal order is obtained for the VEM with $k=2$. Two numerical examples are reported to show that VEM can work on very general polygonal elements, and the convergence orders in the $H^1$ norm agree well with the theoretical prediction.
doi_str_mv 10.1093/imanum/dry055
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_dry055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_dry055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-eed0f5ee446d7bf92041e8ce5a4847219aead12165a76f9ba24abff63d4d946e3</originalsourceid><addsrcrecordid>eNotz01LAzEUheEgCo7Vpfv8gdib5E7SLKX4USi4UbchM7mhlZlOSdJF_72VcXU2Lwcexh4lPElwerkfw-E0LmM-Q9tesUaiQaENqmvWgLJKoLPult2V8gMAaCw0DL73uZ7CwGmgkQ6Vj1R3Uyw8TZnXHfGpKzX0A_FjnrpLc89uUhgKPfzvgn29vnyu38X2422zft6KXmlbBVGE1BIhmmi75BSgpFVPbcAVWiVdoBClkqYN1iTXBYWhS8noiNGhIb1gYv7t81RKpuSP-QLMZy_B_3H9zPUzV_8C-K5Lng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Virtual element methods for the obstacle problem</title><source>Oxford Academic Journals (OUP)</source><creator>Wang, Fei ; Wei, Huayi</creator><creatorcontrib>Wang, Fei ; Wei, Huayi</creatorcontrib><description>We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degrees of freedom are carefully chosen so that the stiffness matrix can be computed without actually computing the nonpolynomial functions. With this special design, VEMS can easily deal with complicated element geometries. In this paper we establish a priori error estimates of VEMs for the obstacle problem. We prove that the lowest-order ($k=1$) VEM achieves the optimal convergence order, and suboptimal order is obtained for the VEM with $k=2$. Two numerical examples are reported to show that VEM can work on very general polygonal elements, and the convergence orders in the $H^1$ norm agree well with the theoretical prediction.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/dry055</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2020-01, Vol.40 (1), p.708-728</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-eed0f5ee446d7bf92041e8ce5a4847219aead12165a76f9ba24abff63d4d946e3</citedby><cites>FETCH-LOGICAL-c237t-eed0f5ee446d7bf92041e8ce5a4847219aead12165a76f9ba24abff63d4d946e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><title>Virtual element methods for the obstacle problem</title><title>IMA journal of numerical analysis</title><description>We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degrees of freedom are carefully chosen so that the stiffness matrix can be computed without actually computing the nonpolynomial functions. With this special design, VEMS can easily deal with complicated element geometries. In this paper we establish a priori error estimates of VEMs for the obstacle problem. We prove that the lowest-order ($k=1$) VEM achieves the optimal convergence order, and suboptimal order is obtained for the VEM with $k=2$. Two numerical examples are reported to show that VEM can work on very general polygonal elements, and the convergence orders in the $H^1$ norm agree well with the theoretical prediction.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotz01LAzEUheEgCo7Vpfv8gdib5E7SLKX4USi4UbchM7mhlZlOSdJF_72VcXU2Lwcexh4lPElwerkfw-E0LmM-Q9tesUaiQaENqmvWgLJKoLPult2V8gMAaCw0DL73uZ7CwGmgkQ6Vj1R3Uyw8TZnXHfGpKzX0A_FjnrpLc89uUhgKPfzvgn29vnyu38X2422zft6KXmlbBVGE1BIhmmi75BSgpFVPbcAVWiVdoBClkqYN1iTXBYWhS8noiNGhIb1gYv7t81RKpuSP-QLMZy_B_3H9zPUzV_8C-K5Lng</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Fei</creator><creator>Wei, Huayi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>Virtual element methods for the obstacle problem</title><author>Wang, Fei ; Wei, Huayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-eed0f5ee446d7bf92041e8ce5a4847219aead12165a76f9ba24abff63d4d946e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Wei, Huayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual element methods for the obstacle problem</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>40</volume><issue>1</issue><spage>708</spage><epage>728</epage><pages>708-728</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degrees of freedom are carefully chosen so that the stiffness matrix can be computed without actually computing the nonpolynomial functions. With this special design, VEMS can easily deal with complicated element geometries. In this paper we establish a priori error estimates of VEMs for the obstacle problem. We prove that the lowest-order ($k=1$) VEM achieves the optimal convergence order, and suboptimal order is obtained for the VEM with $k=2$. Two numerical examples are reported to show that VEM can work on very general polygonal elements, and the convergence orders in the $H^1$ norm agree well with the theoretical prediction.</abstract><doi>10.1093/imanum/dry055</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2020-01, Vol.40 (1), p.708-728
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_dry055
source Oxford Academic Journals (OUP)
title Virtual element methods for the obstacle problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20element%20methods%20for%20the%20obstacle%20problem&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Wang,%20Fei&rft.date=2020-01-01&rft.volume=40&rft.issue=1&rft.spage=708&rft.epage=728&rft.pages=708-728&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/dry055&rft_dat=%3Ccrossref%3E10_1093_imanum_dry055%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true