Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation

Abstract Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2019-10, Vol.39 (4), p.1818-1859
Hauptverfasser: Jahnke, T, Mikl, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1859
container_issue 4
container_start_page 1818
container_title IMA journal of numerical analysis
container_volume 39
creator Jahnke, T
Mikl, M
description Abstract Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke & Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.
doi_str_mv 10.1093/imanum/dry045
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_dry045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/dry045</oup_id><sourcerecordid>10.1093/imanum/dry045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhoMoOKdH7zl6qfvSpMlyHEOdMPCgXi1p82WLdElNW3B_zD_gH7NS755eXnh4X3gIuWZwy0DzhT-YMBwWNh1BFCdkxoQUGZciPyUzyFWeCa30ObnouncAEFLBjLytrDeV6X1N8bONAUPvTUMP3rbRh56moUHqYqL9Hqn1XYup8zFk45XZoaUhhsYHNIk-1_v0_WV92GGi-DGMmzFckjNnmg6v_nJOXu_vXtabbPv08LhebbM6V9BnDIU2lSxyqXSFxjCmDIciN8vKWekcXxZOS8cryLUeG9i6klojKCgkx4rPSTbt1il2XUJXtmnUkY4lg_JXTjnJKSc5I38z8XFo_0F_AP1oa1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Jahnke, T ; Mikl, M</creator><creatorcontrib>Jahnke, T ; Mikl, M</creatorcontrib><description>Abstract Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke &amp; Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/dry045</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>IMA journal of numerical analysis, 2019-10, Vol.39 (4), p.1818-1859</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</citedby><cites>FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Jahnke, T</creatorcontrib><creatorcontrib>Mikl, M</creatorcontrib><title>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</title><title>IMA journal of numerical analysis</title><description>Abstract Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke &amp; Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhoMoOKdH7zl6qfvSpMlyHEOdMPCgXi1p82WLdElNW3B_zD_gH7NS755eXnh4X3gIuWZwy0DzhT-YMBwWNh1BFCdkxoQUGZciPyUzyFWeCa30ObnouncAEFLBjLytrDeV6X1N8bONAUPvTUMP3rbRh56moUHqYqL9Hqn1XYup8zFk45XZoaUhhsYHNIk-1_v0_WV92GGi-DGMmzFckjNnmg6v_nJOXu_vXtabbPv08LhebbM6V9BnDIU2lSxyqXSFxjCmDIciN8vKWekcXxZOS8cryLUeG9i6klojKCgkx4rPSTbt1il2XUJXtmnUkY4lg_JXTjnJKSc5I38z8XFo_0F_AP1oa1Q</recordid><startdate>20191016</startdate><enddate>20191016</enddate><creator>Jahnke, T</creator><creator>Mikl, M</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191016</creationdate><title>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</title><author>Jahnke, T ; Mikl, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahnke, T</creatorcontrib><creatorcontrib>Mikl, M</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahnke, T</au><au>Mikl, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2019-10-16</date><risdate>2019</risdate><volume>39</volume><issue>4</issue><spage>1818</spage><epage>1859</epage><pages>1818-1859</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Abstract Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke &amp; Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.</abstract><pub>Oxford University Press</pub><doi>10.1093/imanum/dry045</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2019-10, Vol.39 (4), p.1818-1859
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_dry045
source Oxford University Press Journals All Titles (1996-Current)
title Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20exponential%20midpoint%20rule%20for%20the%20dispersion-managed%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Jahnke,%20T&rft.date=2019-10-16&rft.volume=39&rft.issue=4&rft.spage=1818&rft.epage=1859&rft.pages=1818-1859&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/dry045&rft_dat=%3Coup_cross%3E10.1093/imanum/dry045%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/dry045&rfr_iscdi=true