Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation
Abstract Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have lo...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2019-10, Vol.39 (4), p.1818-1859 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1859 |
---|---|
container_issue | 4 |
container_start_page | 1818 |
container_title | IMA journal of numerical analysis |
container_volume | 39 |
creator | Jahnke, T Mikl, M |
description | Abstract
Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke & Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way. |
doi_str_mv | 10.1093/imanum/dry045 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_dry045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/dry045</oup_id><sourcerecordid>10.1093/imanum/dry045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhoMoOKdH7zl6qfvSpMlyHEOdMPCgXi1p82WLdElNW3B_zD_gH7NS755eXnh4X3gIuWZwy0DzhT-YMBwWNh1BFCdkxoQUGZciPyUzyFWeCa30ObnouncAEFLBjLytrDeV6X1N8bONAUPvTUMP3rbRh56moUHqYqL9Hqn1XYup8zFk45XZoaUhhsYHNIk-1_v0_WV92GGi-DGMmzFckjNnmg6v_nJOXu_vXtabbPv08LhebbM6V9BnDIU2lSxyqXSFxjCmDIciN8vKWekcXxZOS8cryLUeG9i6klojKCgkx4rPSTbt1il2XUJXtmnUkY4lg_JXTjnJKSc5I38z8XFo_0F_AP1oa1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Jahnke, T ; Mikl, M</creator><creatorcontrib>Jahnke, T ; Mikl, M</creatorcontrib><description>Abstract
Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke & Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/dry045</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>IMA journal of numerical analysis, 2019-10, Vol.39 (4), p.1818-1859</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</citedby><cites>FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Jahnke, T</creatorcontrib><creatorcontrib>Mikl, M</creatorcontrib><title>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</title><title>IMA journal of numerical analysis</title><description>Abstract
Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke & Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhoMoOKdH7zl6qfvSpMlyHEOdMPCgXi1p82WLdElNW3B_zD_gH7NS755eXnh4X3gIuWZwy0DzhT-YMBwWNh1BFCdkxoQUGZciPyUzyFWeCa30ObnouncAEFLBjLytrDeV6X1N8bONAUPvTUMP3rbRh56moUHqYqL9Hqn1XYup8zFk45XZoaUhhsYHNIk-1_v0_WV92GGi-DGMmzFckjNnmg6v_nJOXu_vXtabbPv08LhebbM6V9BnDIU2lSxyqXSFxjCmDIciN8vKWekcXxZOS8cryLUeG9i6klojKCgkx4rPSTbt1il2XUJXtmnUkY4lg_JXTjnJKSc5I38z8XFo_0F_AP1oa1Q</recordid><startdate>20191016</startdate><enddate>20191016</enddate><creator>Jahnke, T</creator><creator>Mikl, M</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191016</creationdate><title>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</title><author>Jahnke, T ; Mikl, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1e49ab652679beaa117a3052a8bfd6ff385f96f3b0299f380dcb699e070563eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahnke, T</creatorcontrib><creatorcontrib>Mikl, M</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahnke, T</au><au>Mikl, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2019-10-16</date><risdate>2019</risdate><volume>39</volume><issue>4</issue><spage>1818</spage><epage>1859</epage><pages>1818-1859</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Abstract
Modeling long-haul data transmission through dispersion-managed optical fiber cables leads to a nonlinear Schrödinger equation where the linear part is multiplied by a large, discontinuous and rapidly changing coefficient function. Typical solutions oscillate with high frequency and have low regularity in time, such that traditional numerical methods suffer from severe step size restrictions and typically converge only with low order. We construct and analyse a norm-conserving, uniformly convergent time-integrator called the adiabatic exponential midpoint rule by extending techniques developed in Jahnke & Mikl (2018, Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Numer. Math., 138, 975–1009). This method is several orders of magnitude more accurate than standard schemes for a relevant set of parameters. In particular, we prove that the accuracy of the method improves considerably if the step size is chosen in a special way.</abstract><pub>Oxford University Press</pub><doi>10.1093/imanum/dry045</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2019-10, Vol.39 (4), p.1818-1859 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imanum_dry045 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20exponential%20midpoint%20rule%20for%20the%20dispersion-managed%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Jahnke,%20T&rft.date=2019-10-16&rft.volume=39&rft.issue=4&rft.spage=1818&rft.epage=1859&rft.pages=1818-1859&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/dry045&rft_dat=%3Coup_cross%3E10.1093/imanum/dry045%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/dry045&rfr_iscdi=true |