An L p spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations

In this work we present and analyse a new fully mixed finite element method for the nonlinear problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure and temperature variables of the fluid, our approach is based on the introduction of the pseudoheat flux as a fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2022-10, Vol.42 (4), p.3154-3206
Hauptverfasser: Gatica, Gabriel N, Meddahi, Salim, Ruiz-Baier, Ricardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3206
container_issue 4
container_start_page 3154
container_title IMA journal of numerical analysis
container_volume 42
creator Gatica, Gabriel N
Meddahi, Salim
Ruiz-Baier, Ricardo
description In this work we present and analyse a new fully mixed finite element method for the nonlinear problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure and temperature variables of the fluid, our approach is based on the introduction of the pseudoheat flux as a further unknown. As a consequence of it, and due to the convective term involving the velocity and the temperature, we arrive at saddle point-type schemes in Banach spaces for both equations. In particular, and as suggested by the solvability of a related Neumann problem to be employed in the analysis, we need to make convenient choices of the Lebesgue and ${\textrm {H}}(div)$-type spaces to which the unknowns and test functions belong. The resulting coupled formulation is then written equivalently as a fixed-point operator, so that the classical Banach theorem, combined with the corresponding Babuška–Brezzi theory, the Banach–Nečas–Babuška theorem, suitable operators mapping Lebesgue spaces into themselves, regularity assumptions and the aforementioned Neumann problem, are employed to establish the unique solvability of the continuous formulation. Under standard hypotheses satisfied by generic finite element subspaces, the associated Galerkin scheme is analysed similarly and the Brouwer theorem yields existence of a solution. The respective a priori error analysis is also derived. Then, Raviart–Thomas elements of order $k\ge 0$ for the pseudoheat and the velocity and discontinuous piecewise polynomials of degree $\le k$ for the pressure and the temperature are shown to satisfy those hypotheses in the two-dimensional case. Several numerical examples illustrating the performance and convergence of the method are reported, including an application into the equivalent problem of miscible displacement in porous media.
doi_str_mv 10.1093/imanum/drab063
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_drab063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-73b8731daf21259029941563503b6a055f0c5c89c373db59973a522818b227eb3</originalsourceid><addsrcrecordid>eNotkL1OwzAYRS0EEqWwMn8vkNY_cRyPVfmVKrHAHDnOFxrkOMF2BHl7StvpLuee4RByz-iKUS3WXW_81K-bYGpaiAuyYHmRZ6LI-SVZUK54lmulr8lNjF-U0rxQdEHmjYcdjBBHYzFmtYnYQDuEfnImdYOHuUPXdP4TDHj8gXZyboa--_3HOt8lBHTYo0_QY9oPxzOkPYIdptEdqAcT7AzGN7BHkwC_p6M43pKr1riId-ddko-nx_ftS7Z7e37dbnaZZYVOmRJ1qQRrTMsZl5pyrXMmCyGpqAtDpWyplbbUVijR1FJrJYzkvGRlzbnCWizJ6uS1YYgxYFuN4ZAqzBWj1X-46hSuOocTfy7dZFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An L p spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Gatica, Gabriel N ; Meddahi, Salim ; Ruiz-Baier, Ricardo</creator><creatorcontrib>Gatica, Gabriel N ; Meddahi, Salim ; Ruiz-Baier, Ricardo</creatorcontrib><description>In this work we present and analyse a new fully mixed finite element method for the nonlinear problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure and temperature variables of the fluid, our approach is based on the introduction of the pseudoheat flux as a further unknown. As a consequence of it, and due to the convective term involving the velocity and the temperature, we arrive at saddle point-type schemes in Banach spaces for both equations. In particular, and as suggested by the solvability of a related Neumann problem to be employed in the analysis, we need to make convenient choices of the Lebesgue and ${\textrm {H}}(div)$-type spaces to which the unknowns and test functions belong. The resulting coupled formulation is then written equivalently as a fixed-point operator, so that the classical Banach theorem, combined with the corresponding Babuška–Brezzi theory, the Banach–Nečas–Babuška theorem, suitable operators mapping Lebesgue spaces into themselves, regularity assumptions and the aforementioned Neumann problem, are employed to establish the unique solvability of the continuous formulation. Under standard hypotheses satisfied by generic finite element subspaces, the associated Galerkin scheme is analysed similarly and the Brouwer theorem yields existence of a solution. The respective a priori error analysis is also derived. Then, Raviart–Thomas elements of order $k\ge 0$ for the pseudoheat and the velocity and discontinuous piecewise polynomials of degree $\le k$ for the pressure and the temperature are shown to satisfy those hypotheses in the two-dimensional case. Several numerical examples illustrating the performance and convergence of the method are reported, including an application into the equivalent problem of miscible displacement in porous media.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab063</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2022-10, Vol.42 (4), p.3154-3206</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-73b8731daf21259029941563503b6a055f0c5c89c373db59973a522818b227eb3</citedby><cites>FETCH-LOGICAL-c169t-73b8731daf21259029941563503b6a055f0c5c89c373db59973a522818b227eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gatica, Gabriel N</creatorcontrib><creatorcontrib>Meddahi, Salim</creatorcontrib><creatorcontrib>Ruiz-Baier, Ricardo</creatorcontrib><title>An L p spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations</title><title>IMA journal of numerical analysis</title><description>In this work we present and analyse a new fully mixed finite element method for the nonlinear problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure and temperature variables of the fluid, our approach is based on the introduction of the pseudoheat flux as a further unknown. As a consequence of it, and due to the convective term involving the velocity and the temperature, we arrive at saddle point-type schemes in Banach spaces for both equations. In particular, and as suggested by the solvability of a related Neumann problem to be employed in the analysis, we need to make convenient choices of the Lebesgue and ${\textrm {H}}(div)$-type spaces to which the unknowns and test functions belong. The resulting coupled formulation is then written equivalently as a fixed-point operator, so that the classical Banach theorem, combined with the corresponding Babuška–Brezzi theory, the Banach–Nečas–Babuška theorem, suitable operators mapping Lebesgue spaces into themselves, regularity assumptions and the aforementioned Neumann problem, are employed to establish the unique solvability of the continuous formulation. Under standard hypotheses satisfied by generic finite element subspaces, the associated Galerkin scheme is analysed similarly and the Brouwer theorem yields existence of a solution. The respective a priori error analysis is also derived. Then, Raviart–Thomas elements of order $k\ge 0$ for the pseudoheat and the velocity and discontinuous piecewise polynomials of degree $\le k$ for the pressure and the temperature are shown to satisfy those hypotheses in the two-dimensional case. Several numerical examples illustrating the performance and convergence of the method are reported, including an application into the equivalent problem of miscible displacement in porous media.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAYRS0EEqWwMn8vkNY_cRyPVfmVKrHAHDnOFxrkOMF2BHl7StvpLuee4RByz-iKUS3WXW_81K-bYGpaiAuyYHmRZ6LI-SVZUK54lmulr8lNjF-U0rxQdEHmjYcdjBBHYzFmtYnYQDuEfnImdYOHuUPXdP4TDHj8gXZyboa--_3HOt8lBHTYo0_QY9oPxzOkPYIdptEdqAcT7AzGN7BHkwC_p6M43pKr1riId-ddko-nx_ftS7Z7e37dbnaZZYVOmRJ1qQRrTMsZl5pyrXMmCyGpqAtDpWyplbbUVijR1FJrJYzkvGRlzbnCWizJ6uS1YYgxYFuN4ZAqzBWj1X-46hSuOocTfy7dZFU</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gatica, Gabriel N</creator><creator>Meddahi, Salim</creator><creator>Ruiz-Baier, Ricardo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>An L p spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations</title><author>Gatica, Gabriel N ; Meddahi, Salim ; Ruiz-Baier, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-73b8731daf21259029941563503b6a055f0c5c89c373db59973a522818b227eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gatica, Gabriel N</creatorcontrib><creatorcontrib>Meddahi, Salim</creatorcontrib><creatorcontrib>Ruiz-Baier, Ricardo</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gatica, Gabriel N</au><au>Meddahi, Salim</au><au>Ruiz-Baier, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An L p spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>3154</spage><epage>3206</epage><pages>3154-3206</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>In this work we present and analyse a new fully mixed finite element method for the nonlinear problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure and temperature variables of the fluid, our approach is based on the introduction of the pseudoheat flux as a further unknown. As a consequence of it, and due to the convective term involving the velocity and the temperature, we arrive at saddle point-type schemes in Banach spaces for both equations. In particular, and as suggested by the solvability of a related Neumann problem to be employed in the analysis, we need to make convenient choices of the Lebesgue and ${\textrm {H}}(div)$-type spaces to which the unknowns and test functions belong. The resulting coupled formulation is then written equivalently as a fixed-point operator, so that the classical Banach theorem, combined with the corresponding Babuška–Brezzi theory, the Banach–Nečas–Babuška theorem, suitable operators mapping Lebesgue spaces into themselves, regularity assumptions and the aforementioned Neumann problem, are employed to establish the unique solvability of the continuous formulation. Under standard hypotheses satisfied by generic finite element subspaces, the associated Galerkin scheme is analysed similarly and the Brouwer theorem yields existence of a solution. The respective a priori error analysis is also derived. Then, Raviart–Thomas elements of order $k\ge 0$ for the pseudoheat and the velocity and discontinuous piecewise polynomials of degree $\le k$ for the pressure and the temperature are shown to satisfy those hypotheses in the two-dimensional case. Several numerical examples illustrating the performance and convergence of the method are reported, including an application into the equivalent problem of miscible displacement in porous media.</abstract><doi>10.1093/imanum/drab063</doi><tpages>53</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2022-10, Vol.42 (4), p.3154-3206
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_drab063
source Oxford University Press Journals All Titles (1996-Current)
title An L p spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20L%20p%20spaces-based%20formulation%20yielding%20a%20new%20fully%20mixed%20finite%20element%20method%20for%20the%20coupled%20Darcy%20and%20heat%20equations&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Gatica,%20Gabriel%20N&rft.date=2022-10-01&rft.volume=42&rft.issue=4&rft.spage=3154&rft.epage=3206&rft.pages=3154-3206&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab063&rft_dat=%3Ccrossref%3E10_1093_imanum_drab063%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true