The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method
We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2022-10, Vol.42 (4), p.3094-3134 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3134 |
---|---|
container_issue | 4 |
container_start_page | 3094 |
container_title | IMA journal of numerical analysis |
container_volume | 42 |
creator | Walker, Shawn W |
description | We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method. |
doi_str_mv | 10.1093/imanum/drab062 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_drab062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWwZe0LpB0_4tTsUAUEqMSmSOwixxkrQXkUO1mw4w7ckJPgqpFG_zw0_4z0EXLLYMVAi3XTmX7q1pU3JSh-RhZMKpkIJfk5WQDPeCJ1pi_JVQifACBVBgvysa-Rvjbe1vXgHD20ZkSKX5MZm6GnMcLknbEY7ugYN-eO5ti2pv_7-c3R-_j3WL4MdR-io8OxHqprcuFMG_Bmzkvy_viw3-bJ7u3peXu_SywXekw2FccUnDUp09wK5qrMVVKmABZBOoPOKZtZacHEsdVKlzyFqEqWhvONWJLV6a71QwgeXXHwkYT_LhgURy7FiUsxcxH_pA9ckw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Walker, Shawn W</creator><creatorcontrib>Walker, Shawn W</creatorcontrib><description>We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab062</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2022-10, Vol.42 (4), p.3094-3134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</citedby><cites>FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Walker, Shawn W</creatorcontrib><title>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</title><title>IMA journal of numerical analysis</title><description>We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWwZe0LpB0_4tTsUAUEqMSmSOwixxkrQXkUO1mw4w7ckJPgqpFG_zw0_4z0EXLLYMVAi3XTmX7q1pU3JSh-RhZMKpkIJfk5WQDPeCJ1pi_JVQifACBVBgvysa-Rvjbe1vXgHD20ZkSKX5MZm6GnMcLknbEY7ugYN-eO5ti2pv_7-c3R-_j3WL4MdR-io8OxHqprcuFMG_Bmzkvy_viw3-bJ7u3peXu_SywXekw2FccUnDUp09wK5qrMVVKmABZBOoPOKZtZacHEsdVKlzyFqEqWhvONWJLV6a71QwgeXXHwkYT_LhgURy7FiUsxcxH_pA9ckw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Walker, Shawn W</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</title><author>Walker, Shawn W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Shawn W</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Shawn W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>3094</spage><epage>3134</epage><pages>3094-3134</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.</abstract><doi>10.1093/imanum/drab062</doi><tpages>41</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2022-10, Vol.42 (4), p.3094-3134 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imanum_drab062 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kirchhoff%20plate%20equation%20on%20surfaces:%20the%20surface%20Hellan%E2%80%93Herrmann%E2%80%93Johnson%20method&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Walker,%20Shawn%20W&rft.date=2022-10-01&rft.volume=42&rft.issue=4&rft.spage=3094&rft.epage=3134&rft.pages=3094-3134&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab062&rft_dat=%3Ccrossref%3E10_1093_imanum_drab062%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |