The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method

We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2022-10, Vol.42 (4), p.3094-3134
1. Verfasser: Walker, Shawn W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3134
container_issue 4
container_start_page 3094
container_title IMA journal of numerical analysis
container_volume 42
creator Walker, Shawn W
description We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.
doi_str_mv 10.1093/imanum/drab062
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_drab062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWwZe0LpB0_4tTsUAUEqMSmSOwixxkrQXkUO1mw4w7ckJPgqpFG_zw0_4z0EXLLYMVAi3XTmX7q1pU3JSh-RhZMKpkIJfk5WQDPeCJ1pi_JVQifACBVBgvysa-Rvjbe1vXgHD20ZkSKX5MZm6GnMcLknbEY7ugYN-eO5ti2pv_7-c3R-_j3WL4MdR-io8OxHqprcuFMG_Bmzkvy_viw3-bJ7u3peXu_SywXekw2FccUnDUp09wK5qrMVVKmABZBOoPOKZtZacHEsdVKlzyFqEqWhvONWJLV6a71QwgeXXHwkYT_LhgURy7FiUsxcxH_pA9ckw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Walker, Shawn W</creator><creatorcontrib>Walker, Shawn W</creatorcontrib><description>We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt &amp; R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab062</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2022-10, Vol.42 (4), p.3094-3134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</citedby><cites>FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Walker, Shawn W</creatorcontrib><title>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</title><title>IMA journal of numerical analysis</title><description>We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt &amp; R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWwZe0LpB0_4tTsUAUEqMSmSOwixxkrQXkUO1mw4w7ckJPgqpFG_zw0_4z0EXLLYMVAi3XTmX7q1pU3JSh-RhZMKpkIJfk5WQDPeCJ1pi_JVQifACBVBgvysa-Rvjbe1vXgHD20ZkSKX5MZm6GnMcLknbEY7ugYN-eO5ti2pv_7-c3R-_j3WL4MdR-io8OxHqprcuFMG_Bmzkvy_viw3-bJ7u3peXu_SywXekw2FccUnDUp09wK5qrMVVKmABZBOoPOKZtZacHEsdVKlzyFqEqWhvONWJLV6a71QwgeXXHwkYT_LhgURy7FiUsxcxH_pA9ckw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Walker, Shawn W</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</title><author>Walker, Shawn W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-8d2e50fca5192c31fd7fd44500ce04faeff6c7c4c0ad44c969b25069b64ba2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Shawn W</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Shawn W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>3094</spage><epage>3134</epage><pages>3094-3134</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt &amp; R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.</abstract><doi>10.1093/imanum/drab062</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2022-10, Vol.42 (4), p.3094-3134
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_drab062
source Oxford University Press Journals All Titles (1996-Current)
title The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kirchhoff%20plate%20equation%20on%20surfaces:%20the%20surface%20Hellan%E2%80%93Herrmann%E2%80%93Johnson%20method&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Walker,%20Shawn%20W&rft.date=2022-10-01&rft.volume=42&rft.issue=4&rft.spage=3094&rft.epage=3134&rft.pages=3094-3134&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab062&rft_dat=%3Ccrossref%3E10_1093_imanum_drab062%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true