An adaptive edge finite element DtN method for Maxwell’s equations in biperiodic structures

Abstract We consider the diffraction of an electromagnetic plane wave by a biperiodic structure. This paper is concerned with a numerical solution of the diffraction grating problem for three-dimensional Maxwell’s equations. Based on the Dirichlet-to-Neumann (DtN) operator, an equivalent boundary va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2022-07, Vol.42 (3), p.2794-2828
Hauptverfasser: Jiang, Xue, Li, Peijun, Lv, Junliang, Wang, Zhoufeng, Wu, Haijun, Zheng, Weiying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2828
container_issue 3
container_start_page 2794
container_title IMA journal of numerical analysis
container_volume 42
creator Jiang, Xue
Li, Peijun
Lv, Junliang
Wang, Zhoufeng
Wu, Haijun
Zheng, Weiying
description Abstract We consider the diffraction of an electromagnetic plane wave by a biperiodic structure. This paper is concerned with a numerical solution of the diffraction grating problem for three-dimensional Maxwell’s equations. Based on the Dirichlet-to-Neumann (DtN) operator, an equivalent boundary value problem is formulated in a bounded domain by using a transparent boundary condition. An a posteriori error estimate-based adaptive edge finite element method is developed for the variational problem with the truncated DtN operator. The estimate takes account of both the finite element approximation error and the truncation error of the DtN operator, where the former is used for local mesh refinements and the latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to demonstrate the competitive behaviour of the proposed method.
doi_str_mv 10.1093/imanum/drab052
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drab052</oup_id><sourcerecordid>10.1093/imanum/drab052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-cf58f063f29496a164ac29a30d973df5de86a28672b5a5fa4cf8ff1e899622433</originalsourceid><addsrcrecordid>eNqFkLtOAzEURC0EEiHQUrulWOK1vd51GYWnFKCBEq1u7Gsw2he2l0fHb_B7fAlBSU81U8yZ4hBynLPTnGkx8y10YzuzAVas4DtkkkslM6Ek3yUTxkueSV3qfXIQ4wtjTKqSTcjjvKNgYUj-DSnaJ6TOdz6te4MtdomepVvaYnruLXV9oDfw8Y5N8_P1HSm-jpB830XqO7ryAwbfW29oTGE0aQwYD8megybi0Tan5OHi_H5xlS3vLq8X82VmeClSZlxROaaE41pqBbmSYLgGwawuhXWFxUoBr1TJVwUUDqRxlXM5VlorzqUQU3K6-TWhjzGgq4ew1hE-65zVf3LqjZx6K2cNnGyAfhz-2_4C_8xrDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An adaptive edge finite element DtN method for Maxwell’s equations in biperiodic structures</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Jiang, Xue ; Li, Peijun ; Lv, Junliang ; Wang, Zhoufeng ; Wu, Haijun ; Zheng, Weiying</creator><creatorcontrib>Jiang, Xue ; Li, Peijun ; Lv, Junliang ; Wang, Zhoufeng ; Wu, Haijun ; Zheng, Weiying</creatorcontrib><description>Abstract We consider the diffraction of an electromagnetic plane wave by a biperiodic structure. This paper is concerned with a numerical solution of the diffraction grating problem for three-dimensional Maxwell’s equations. Based on the Dirichlet-to-Neumann (DtN) operator, an equivalent boundary value problem is formulated in a bounded domain by using a transparent boundary condition. An a posteriori error estimate-based adaptive edge finite element method is developed for the variational problem with the truncated DtN operator. The estimate takes account of both the finite element approximation error and the truncation error of the DtN operator, where the former is used for local mesh refinements and the latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to demonstrate the competitive behaviour of the proposed method.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab052</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>IMA journal of numerical analysis, 2022-07, Vol.42 (3), p.2794-2828</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-cf58f063f29496a164ac29a30d973df5de86a28672b5a5fa4cf8ff1e899622433</citedby><cites>FETCH-LOGICAL-c273t-cf58f063f29496a164ac29a30d973df5de86a28672b5a5fa4cf8ff1e899622433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Li, Peijun</creatorcontrib><creatorcontrib>Lv, Junliang</creatorcontrib><creatorcontrib>Wang, Zhoufeng</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Zheng, Weiying</creatorcontrib><title>An adaptive edge finite element DtN method for Maxwell’s equations in biperiodic structures</title><title>IMA journal of numerical analysis</title><description>Abstract We consider the diffraction of an electromagnetic plane wave by a biperiodic structure. This paper is concerned with a numerical solution of the diffraction grating problem for three-dimensional Maxwell’s equations. Based on the Dirichlet-to-Neumann (DtN) operator, an equivalent boundary value problem is formulated in a bounded domain by using a transparent boundary condition. An a posteriori error estimate-based adaptive edge finite element method is developed for the variational problem with the truncated DtN operator. The estimate takes account of both the finite element approximation error and the truncation error of the DtN operator, where the former is used for local mesh refinements and the latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to demonstrate the competitive behaviour of the proposed method.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEURC0EEiHQUrulWOK1vd51GYWnFKCBEq1u7Gsw2he2l0fHb_B7fAlBSU81U8yZ4hBynLPTnGkx8y10YzuzAVas4DtkkkslM6Ek3yUTxkueSV3qfXIQ4wtjTKqSTcjjvKNgYUj-DSnaJ6TOdz6te4MtdomepVvaYnruLXV9oDfw8Y5N8_P1HSm-jpB830XqO7ryAwbfW29oTGE0aQwYD8megybi0Tan5OHi_H5xlS3vLq8X82VmeClSZlxROaaE41pqBbmSYLgGwawuhXWFxUoBr1TJVwUUDqRxlXM5VlorzqUQU3K6-TWhjzGgq4ew1hE-65zVf3LqjZx6K2cNnGyAfhz-2_4C_8xrDA</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Jiang, Xue</creator><creator>Li, Peijun</creator><creator>Lv, Junliang</creator><creator>Wang, Zhoufeng</creator><creator>Wu, Haijun</creator><creator>Zheng, Weiying</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220722</creationdate><title>An adaptive edge finite element DtN method for Maxwell’s equations in biperiodic structures</title><author>Jiang, Xue ; Li, Peijun ; Lv, Junliang ; Wang, Zhoufeng ; Wu, Haijun ; Zheng, Weiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-cf58f063f29496a164ac29a30d973df5de86a28672b5a5fa4cf8ff1e899622433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Li, Peijun</creatorcontrib><creatorcontrib>Lv, Junliang</creatorcontrib><creatorcontrib>Wang, Zhoufeng</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Zheng, Weiying</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xue</au><au>Li, Peijun</au><au>Lv, Junliang</au><au>Wang, Zhoufeng</au><au>Wu, Haijun</au><au>Zheng, Weiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive edge finite element DtN method for Maxwell’s equations in biperiodic structures</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>42</volume><issue>3</issue><spage>2794</spage><epage>2828</epage><pages>2794-2828</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Abstract We consider the diffraction of an electromagnetic plane wave by a biperiodic structure. This paper is concerned with a numerical solution of the diffraction grating problem for three-dimensional Maxwell’s equations. Based on the Dirichlet-to-Neumann (DtN) operator, an equivalent boundary value problem is formulated in a bounded domain by using a transparent boundary condition. An a posteriori error estimate-based adaptive edge finite element method is developed for the variational problem with the truncated DtN operator. The estimate takes account of both the finite element approximation error and the truncation error of the DtN operator, where the former is used for local mesh refinements and the latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to demonstrate the competitive behaviour of the proposed method.</abstract><pub>Oxford University Press</pub><doi>10.1093/imanum/drab052</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2022-07, Vol.42 (3), p.2794-2828
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_drab052
source Oxford University Press Journals All Titles (1996-Current)
title An adaptive edge finite element DtN method for Maxwell’s equations in biperiodic structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20edge%20finite%20element%20DtN%20method%20for%20Maxwell%E2%80%99s%20equations%20in%20biperiodic%20structures&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Jiang,%20Xue&rft.date=2022-07-22&rft.volume=42&rft.issue=3&rft.spage=2794&rft.epage=2828&rft.pages=2794-2828&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab052&rft_dat=%3Coup_cross%3E10.1093/imanum/drab052%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drab052&rfr_iscdi=true