Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation

This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The state equation is discretized by a space-time finite e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2021-10, Vol.41 (4), p.2639-2667
Hauptverfasser: Engel, Sebastian, Vexler, Boris, Trautmann, Philip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2667
container_issue 4
container_start_page 2639
container_title IMA journal of numerical analysis
container_volume 41
creator Engel, Sebastian
Vexler, Boris
Trautmann, Philip
description This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The state equation is discretized by a space-time finite element method. The controls are not discretized. Under suitable assumptions optimal convergence rates for the error in the state and control variable are proven. Based on a conditional gradient method the solution of the semi-discretized optimal control problem is computed. The theoretical convergence rates are confirmed in a numerical example.
doi_str_mv 10.1093/imanum/draa032
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_draa032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_draa032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-6fa30bb04aea080bde5e1a7f47827c8b2132ab91aed2bc3704b8f43db6d707983</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRS0EEqWwZe0fSDt-ECdLVPGSKnUD68iOxzQotYvtpuoP8N2ktKxGozn3SnMIuWcwY1CLebfRfreZ26g1CH5BJkyWshCl5JdkAlzxQtaqviY3KX0BgCwVTMjPapvHYE9d57uMFHvcoM8UYwyRYjoeMybqxk17Gs50G3yOoafbGMyYoJ9hwOjRUnOgeY10r4ex63uncxc83Xd5_R9JNDhqws7bkR507P6QW3LldJ_w7jyn5OP56X3xWixXL2-Lx2XRclHnonRagDEgNWqowFh8QKaVk6riqq0MZ4JrUzONlptWKJCmclJYU1oFqq7ElMxOvW0MKUV0zTaOD8VDw6A5WmxOFpuzRfELYt1svQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Engel, Sebastian ; Vexler, Boris ; Trautmann, Philip</creator><creatorcontrib>Engel, Sebastian ; Vexler, Boris ; Trautmann, Philip</creatorcontrib><description>This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The state equation is discretized by a space-time finite element method. The controls are not discretized. Under suitable assumptions optimal convergence rates for the error in the state and control variable are proven. Based on a conditional gradient method the solution of the semi-discretized optimal control problem is computed. The theoretical convergence rates are confirmed in a numerical example.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/draa032</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2021-10, Vol.41 (4), p.2639-2667</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-6fa30bb04aea080bde5e1a7f47827c8b2132ab91aed2bc3704b8f43db6d707983</citedby><cites>FETCH-LOGICAL-c239t-6fa30bb04aea080bde5e1a7f47827c8b2132ab91aed2bc3704b8f43db6d707983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Engel, Sebastian</creatorcontrib><creatorcontrib>Vexler, Boris</creatorcontrib><creatorcontrib>Trautmann, Philip</creatorcontrib><title>Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation</title><title>IMA journal of numerical analysis</title><description>This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The state equation is discretized by a space-time finite element method. The controls are not discretized. Under suitable assumptions optimal convergence rates for the error in the state and control variable are proven. Based on a conditional gradient method the solution of the semi-discretized optimal control problem is computed. The theoretical convergence rates are confirmed in a numerical example.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAQRS0EEqWwZe0fSDt-ECdLVPGSKnUD68iOxzQotYvtpuoP8N2ktKxGozn3SnMIuWcwY1CLebfRfreZ26g1CH5BJkyWshCl5JdkAlzxQtaqviY3KX0BgCwVTMjPapvHYE9d57uMFHvcoM8UYwyRYjoeMybqxk17Gs50G3yOoafbGMyYoJ9hwOjRUnOgeY10r4ex63uncxc83Xd5_R9JNDhqws7bkR507P6QW3LldJ_w7jyn5OP56X3xWixXL2-Lx2XRclHnonRagDEgNWqowFh8QKaVk6riqq0MZ4JrUzONlptWKJCmclJYU1oFqq7ElMxOvW0MKUV0zTaOD8VDw6A5WmxOFpuzRfELYt1svQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Engel, Sebastian</creator><creator>Vexler, Boris</creator><creator>Trautmann, Philip</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation</title><author>Engel, Sebastian ; Vexler, Boris ; Trautmann, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-6fa30bb04aea080bde5e1a7f47827c8b2132ab91aed2bc3704b8f43db6d707983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engel, Sebastian</creatorcontrib><creatorcontrib>Vexler, Boris</creatorcontrib><creatorcontrib>Trautmann, Philip</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engel, Sebastian</au><au>Vexler, Boris</au><au>Trautmann, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>2639</spage><epage>2667</epage><pages>2639-2667</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The state equation is discretized by a space-time finite element method. The controls are not discretized. Under suitable assumptions optimal convergence rates for the error in the state and control variable are proven. Based on a conditional gradient method the solution of the semi-discretized optimal control problem is computed. The theoretical convergence rates are confirmed in a numerical example.</abstract><doi>10.1093/imanum/draa032</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2021-10, Vol.41 (4), p.2639-2667
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_draa032
source Oxford University Press Journals All Titles (1996-Current)
title Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20finite%20element%20error%20estimates%20for%20an%20optimal%20control%20problem%20governed%20by%20the%20wave%20equation%20with%20controls%20of%20bounded%20variation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Engel,%20Sebastian&rft.date=2021-10-01&rft.volume=41&rft.issue=4&rft.spage=2639&rft.epage=2667&rft.pages=2639-2667&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/draa032&rft_dat=%3Ccrossref%3E10_1093_imanum_draa032%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true