A transform-based technique for solving boundary value problems on convex planar domains
A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for bound...
Gespeichert in:
Veröffentlicht in: | IMA journal of applied mathematics 2024-10, Vol.89 (3), p.574-597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 3 |
container_start_page | 574 |
container_title | IMA journal of applied mathematics |
container_volume | 89 |
creator | Hulse, Jesse J Lanzani, Loredana Llewellyn Smith, Stefan G Luca, Elena |
description | A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach. |
doi_str_mv | 10.1093/imamat/hxae018 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imamat_hxae018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imamat_hxae018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-a6783e74ffddb6cf5abd047860fdc13f1b714bc97c412f460d39d1eaa05e6f9a3</originalsourceid><addsrcrecordid>eNot0MtqwzAUBFBRWmiadtu1fsDJlSVL9jKEviDQTQvdmatX42JLqeSY5O-bkqwGZmAWh5BHBgsGDV92Aw44LrcHdMDqKzJjQoqCSy6uyQxKVRaikXBL7nL-AQBWKZiRrxUdE4bsYxoKjdlZOjqzDd3v3tFTSXPspy58Ux33wWI60gn707RLUfduyDQGamKY3IHuegyYqI0DdiHfkxuPfXYPl5yTz-enj_VrsXl_eVuvNoVhpRgLlKrmTgnvrdXS-Aq1BaFqCd4axj3TigltGmUEK72QYHljmUOEyknfIJ-TxfnXpJhzcr7dpZNEOrYM2n-X9uzSXlz4H92rW5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A transform-based technique for solving boundary value problems on convex planar domains</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hulse, Jesse J ; Lanzani, Loredana ; Llewellyn Smith, Stefan G ; Luca, Elena</creator><creatorcontrib>Hulse, Jesse J ; Lanzani, Loredana ; Llewellyn Smith, Stefan G ; Luca, Elena</creatorcontrib><description>A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/hxae018</identifier><language>eng</language><ispartof>IMA journal of applied mathematics, 2024-10, Vol.89 (3), p.574-597</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-a6783e74ffddb6cf5abd047860fdc13f1b714bc97c412f460d39d1eaa05e6f9a3</cites><orcidid>0000-0002-1419-6505 ; 0009-0002-0931-5212 ; 0000-0003-4524-6816 ; 0000-0002-7855-0569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hulse, Jesse J</creatorcontrib><creatorcontrib>Lanzani, Loredana</creatorcontrib><creatorcontrib>Llewellyn Smith, Stefan G</creatorcontrib><creatorcontrib>Luca, Elena</creatorcontrib><title>A transform-based technique for solving boundary value problems on convex planar domains</title><title>IMA journal of applied mathematics</title><description>A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.</description><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0MtqwzAUBFBRWmiadtu1fsDJlSVL9jKEviDQTQvdmatX42JLqeSY5O-bkqwGZmAWh5BHBgsGDV92Aw44LrcHdMDqKzJjQoqCSy6uyQxKVRaikXBL7nL-AQBWKZiRrxUdE4bsYxoKjdlZOjqzDd3v3tFTSXPspy58Ux33wWI60gn707RLUfduyDQGamKY3IHuegyYqI0DdiHfkxuPfXYPl5yTz-enj_VrsXl_eVuvNoVhpRgLlKrmTgnvrdXS-Aq1BaFqCd4axj3TigltGmUEK72QYHljmUOEyknfIJ-TxfnXpJhzcr7dpZNEOrYM2n-X9uzSXlz4H92rW5c</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Hulse, Jesse J</creator><creator>Lanzani, Loredana</creator><creator>Llewellyn Smith, Stefan G</creator><creator>Luca, Elena</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1419-6505</orcidid><orcidid>https://orcid.org/0009-0002-0931-5212</orcidid><orcidid>https://orcid.org/0000-0003-4524-6816</orcidid><orcidid>https://orcid.org/0000-0002-7855-0569</orcidid></search><sort><creationdate>20241027</creationdate><title>A transform-based technique for solving boundary value problems on convex planar domains</title><author>Hulse, Jesse J ; Lanzani, Loredana ; Llewellyn Smith, Stefan G ; Luca, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-a6783e74ffddb6cf5abd047860fdc13f1b714bc97c412f460d39d1eaa05e6f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hulse, Jesse J</creatorcontrib><creatorcontrib>Lanzani, Loredana</creatorcontrib><creatorcontrib>Llewellyn Smith, Stefan G</creatorcontrib><creatorcontrib>Luca, Elena</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hulse, Jesse J</au><au>Lanzani, Loredana</au><au>Llewellyn Smith, Stefan G</au><au>Luca, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transform-based technique for solving boundary value problems on convex planar domains</atitle><jtitle>IMA journal of applied mathematics</jtitle><date>2024-10-27</date><risdate>2024</risdate><volume>89</volume><issue>3</issue><spage>574</spage><epage>597</epage><pages>574-597</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><abstract>A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.</abstract><doi>10.1093/imamat/hxae018</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-1419-6505</orcidid><orcidid>https://orcid.org/0009-0002-0931-5212</orcidid><orcidid>https://orcid.org/0000-0003-4524-6816</orcidid><orcidid>https://orcid.org/0000-0002-7855-0569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4960 |
ispartof | IMA journal of applied mathematics, 2024-10, Vol.89 (3), p.574-597 |
issn | 0272-4960 1464-3634 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imamat_hxae018 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | A transform-based technique for solving boundary value problems on convex planar domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transform-based%20technique%20for%20solving%20boundary%20value%20problems%20on%20convex%20planar%20domains&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Hulse,%20Jesse%20J&rft.date=2024-10-27&rft.volume=89&rft.issue=3&rft.spage=574&rft.epage=597&rft.pages=574-597&rft.issn=0272-4960&rft.eissn=1464-3634&rft_id=info:doi/10.1093/imamat/hxae018&rft_dat=%3Ccrossref%3E10_1093_imamat_hxae018%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |