A transform-based technique for solving boundary value problems on convex planar domains

A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of applied mathematics 2024-10, Vol.89 (3), p.574-597
Hauptverfasser: Hulse, Jesse J, Lanzani, Loredana, Llewellyn Smith, Stefan G, Luca, Elena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 3
container_start_page 574
container_title IMA journal of applied mathematics
container_volume 89
creator Hulse, Jesse J
Lanzani, Loredana
Llewellyn Smith, Stefan G
Luca, Elena
description A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.
doi_str_mv 10.1093/imamat/hxae018
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imamat_hxae018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imamat_hxae018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-a6783e74ffddb6cf5abd047860fdc13f1b714bc97c412f460d39d1eaa05e6f9a3</originalsourceid><addsrcrecordid>eNot0MtqwzAUBFBRWmiadtu1fsDJlSVL9jKEviDQTQvdmatX42JLqeSY5O-bkqwGZmAWh5BHBgsGDV92Aw44LrcHdMDqKzJjQoqCSy6uyQxKVRaikXBL7nL-AQBWKZiRrxUdE4bsYxoKjdlZOjqzDd3v3tFTSXPspy58Ux33wWI60gn707RLUfduyDQGamKY3IHuegyYqI0DdiHfkxuPfXYPl5yTz-enj_VrsXl_eVuvNoVhpRgLlKrmTgnvrdXS-Aq1BaFqCd4axj3TigltGmUEK72QYHljmUOEyknfIJ-TxfnXpJhzcr7dpZNEOrYM2n-X9uzSXlz4H92rW5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A transform-based technique for solving boundary value problems on convex planar domains</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hulse, Jesse J ; Lanzani, Loredana ; Llewellyn Smith, Stefan G ; Luca, Elena</creator><creatorcontrib>Hulse, Jesse J ; Lanzani, Loredana ; Llewellyn Smith, Stefan G ; Luca, Elena</creatorcontrib><description>A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/hxae018</identifier><language>eng</language><ispartof>IMA journal of applied mathematics, 2024-10, Vol.89 (3), p.574-597</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-a6783e74ffddb6cf5abd047860fdc13f1b714bc97c412f460d39d1eaa05e6f9a3</cites><orcidid>0000-0002-1419-6505 ; 0009-0002-0931-5212 ; 0000-0003-4524-6816 ; 0000-0002-7855-0569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hulse, Jesse J</creatorcontrib><creatorcontrib>Lanzani, Loredana</creatorcontrib><creatorcontrib>Llewellyn Smith, Stefan G</creatorcontrib><creatorcontrib>Luca, Elena</creatorcontrib><title>A transform-based technique for solving boundary value problems on convex planar domains</title><title>IMA journal of applied mathematics</title><description>A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.</description><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0MtqwzAUBFBRWmiadtu1fsDJlSVL9jKEviDQTQvdmatX42JLqeSY5O-bkqwGZmAWh5BHBgsGDV92Aw44LrcHdMDqKzJjQoqCSy6uyQxKVRaikXBL7nL-AQBWKZiRrxUdE4bsYxoKjdlZOjqzDd3v3tFTSXPspy58Ux33wWI60gn707RLUfduyDQGamKY3IHuegyYqI0DdiHfkxuPfXYPl5yTz-enj_VrsXl_eVuvNoVhpRgLlKrmTgnvrdXS-Aq1BaFqCd4axj3TigltGmUEK72QYHljmUOEyknfIJ-TxfnXpJhzcr7dpZNEOrYM2n-X9uzSXlz4H92rW5c</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Hulse, Jesse J</creator><creator>Lanzani, Loredana</creator><creator>Llewellyn Smith, Stefan G</creator><creator>Luca, Elena</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1419-6505</orcidid><orcidid>https://orcid.org/0009-0002-0931-5212</orcidid><orcidid>https://orcid.org/0000-0003-4524-6816</orcidid><orcidid>https://orcid.org/0000-0002-7855-0569</orcidid></search><sort><creationdate>20241027</creationdate><title>A transform-based technique for solving boundary value problems on convex planar domains</title><author>Hulse, Jesse J ; Lanzani, Loredana ; Llewellyn Smith, Stefan G ; Luca, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-a6783e74ffddb6cf5abd047860fdc13f1b714bc97c412f460d39d1eaa05e6f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hulse, Jesse J</creatorcontrib><creatorcontrib>Lanzani, Loredana</creatorcontrib><creatorcontrib>Llewellyn Smith, Stefan G</creatorcontrib><creatorcontrib>Luca, Elena</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hulse, Jesse J</au><au>Lanzani, Loredana</au><au>Llewellyn Smith, Stefan G</au><au>Luca, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transform-based technique for solving boundary value problems on convex planar domains</atitle><jtitle>IMA journal of applied mathematics</jtitle><date>2024-10-27</date><risdate>2024</risdate><volume>89</volume><issue>3</issue><spage>574</spage><epage>597</epage><pages>574-597</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><abstract>A new technique is presented that can be used to solve mixed boundary value problems for Laplace’s equation and the complex Helmholtz equation in bounded convex planar domains. This work is an extension of Crowdy (2015, CMFT, 15, 655–687) where new transform-based techniques were developed for boundary value problems for Laplace’s equation in circular domains. The key ingredient of the method is the analysis of the so-called global relation, which provides a coupling of integral transforms of the given boundary data and of the unknown boundary values. Three problems which involve mixed boundary conditions are solved in detail, as well as numerically implemented, to illustrate how to apply the new approach.</abstract><doi>10.1093/imamat/hxae018</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-1419-6505</orcidid><orcidid>https://orcid.org/0009-0002-0931-5212</orcidid><orcidid>https://orcid.org/0000-0003-4524-6816</orcidid><orcidid>https://orcid.org/0000-0002-7855-0569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4960
ispartof IMA journal of applied mathematics, 2024-10, Vol.89 (3), p.574-597
issn 0272-4960
1464-3634
language eng
recordid cdi_crossref_primary_10_1093_imamat_hxae018
source Oxford University Press Journals All Titles (1996-Current)
title A transform-based technique for solving boundary value problems on convex planar domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transform-based%20technique%20for%20solving%20boundary%20value%20problems%20on%20convex%20planar%20domains&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Hulse,%20Jesse%20J&rft.date=2024-10-27&rft.volume=89&rft.issue=3&rft.spage=574&rft.epage=597&rft.pages=574-597&rft.issn=0272-4960&rft.eissn=1464-3634&rft_id=info:doi/10.1093/imamat/hxae018&rft_dat=%3Ccrossref%3E10_1093_imamat_hxae018%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true