Graph connection Laplacian and random matrices with random blocks

Graph connection Laplacian (GCL) is a modern data analysis technique that is starting to be applied for the analysis of high-dimensional and massive datasets. Motivated by this technique, we study matrices that are akin to the ones appearing in the null case of GCL, i.e. the case where there is no s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and inference 2015-03, Vol.4 (1), p.1-44
Hauptverfasser: El Karoui, Noureddine, Wu, Hau-tieng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1
container_start_page 1
container_title Information and inference
container_volume 4
creator El Karoui, Noureddine
Wu, Hau-tieng
description Graph connection Laplacian (GCL) is a modern data analysis technique that is starting to be applied for the analysis of high-dimensional and massive datasets. Motivated by this technique, we study matrices that are akin to the ones appearing in the null case of GCL, i.e. the case where there is no structure in the dataset under investigation. Developing this understanding is important in making sense of the output of the algorithms based on GCL. We hence develop a theory explaining the behavior of the spectral distribution of a large class of random matrices, in particular random matrices with random block entries of fixed size. Part of the theory covers the case where there is significant dependence between the blocks. Numerical work shows that the agreement between our theoretical predictions and numerical simulations is generally very good.
doi_str_mv 10.1093/imaiai/iav001
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imaiai_iav001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imaiai/iav001</oup_id><sourcerecordid>10.1093/imaiai/iav001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d3f7633fd37439ca717ed6aac8575128123cfbbafd235c25e24600e9d75a89be3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouKx79J6jl7r5atMcl0VXoeBFz2U6SdhgtylJVfz3VqpevcwM7zwMzEPINWe3nBm5DScIELYB3hnjZ2QlmDJFrbU4_5srdUk2OYeOccVVNe9WZHdIMB4pxmFwOIU40AbGHjDAQGGwNM0lnugJphTQZfoRpuNv2PURX_MVufDQZ7f56Wvycn_3vH8omqfD437XFCiZmQorva6k9FZqJQ2C5trZCgDrUpdc1FxI9F0H3gpZoiidUBVjzlhdQm06J9ekWO5iijkn59sxzU-nz5az9ltBuyhoFwUzf7Pw8W38B_0CO1BfSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graph connection Laplacian and random matrices with random blocks</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>El Karoui, Noureddine ; Wu, Hau-tieng</creator><creatorcontrib>El Karoui, Noureddine ; Wu, Hau-tieng</creatorcontrib><description>Graph connection Laplacian (GCL) is a modern data analysis technique that is starting to be applied for the analysis of high-dimensional and massive datasets. Motivated by this technique, we study matrices that are akin to the ones appearing in the null case of GCL, i.e. the case where there is no structure in the dataset under investigation. Developing this understanding is important in making sense of the output of the algorithms based on GCL. We hence develop a theory explaining the behavior of the spectral distribution of a large class of random matrices, in particular random matrices with random block entries of fixed size. Part of the theory covers the case where there is significant dependence between the blocks. Numerical work shows that the agreement between our theoretical predictions and numerical simulations is generally very good.</description><identifier>ISSN: 2049-8764</identifier><identifier>EISSN: 2049-8772</identifier><identifier>DOI: 10.1093/imaiai/iav001</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Information and inference, 2015-03, Vol.4 (1), p.1-44</ispartof><rights>The Authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-d3f7633fd37439ca717ed6aac8575128123cfbbafd235c25e24600e9d75a89be3</citedby><cites>FETCH-LOGICAL-c309t-d3f7633fd37439ca717ed6aac8575128123cfbbafd235c25e24600e9d75a89be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids></links><search><creatorcontrib>El Karoui, Noureddine</creatorcontrib><creatorcontrib>Wu, Hau-tieng</creatorcontrib><title>Graph connection Laplacian and random matrices with random blocks</title><title>Information and inference</title><description>Graph connection Laplacian (GCL) is a modern data analysis technique that is starting to be applied for the analysis of high-dimensional and massive datasets. Motivated by this technique, we study matrices that are akin to the ones appearing in the null case of GCL, i.e. the case where there is no structure in the dataset under investigation. Developing this understanding is important in making sense of the output of the algorithms based on GCL. We hence develop a theory explaining the behavior of the spectral distribution of a large class of random matrices, in particular random matrices with random block entries of fixed size. Part of the theory covers the case where there is significant dependence between the blocks. Numerical work shows that the agreement between our theoretical predictions and numerical simulations is generally very good.</description><issn>2049-8764</issn><issn>2049-8772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouKx79J6jl7r5atMcl0VXoeBFz2U6SdhgtylJVfz3VqpevcwM7zwMzEPINWe3nBm5DScIELYB3hnjZ2QlmDJFrbU4_5srdUk2OYeOccVVNe9WZHdIMB4pxmFwOIU40AbGHjDAQGGwNM0lnugJphTQZfoRpuNv2PURX_MVufDQZ7f56Wvycn_3vH8omqfD437XFCiZmQorva6k9FZqJQ2C5trZCgDrUpdc1FxI9F0H3gpZoiidUBVjzlhdQm06J9ekWO5iijkn59sxzU-nz5az9ltBuyhoFwUzf7Pw8W38B_0CO1BfSA</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>El Karoui, Noureddine</creator><creator>Wu, Hau-tieng</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201503</creationdate><title>Graph connection Laplacian and random matrices with random blocks</title><author>El Karoui, Noureddine ; Wu, Hau-tieng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d3f7633fd37439ca717ed6aac8575128123cfbbafd235c25e24600e9d75a89be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Karoui, Noureddine</creatorcontrib><creatorcontrib>Wu, Hau-tieng</creatorcontrib><collection>CrossRef</collection><jtitle>Information and inference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Karoui, Noureddine</au><au>Wu, Hau-tieng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph connection Laplacian and random matrices with random blocks</atitle><jtitle>Information and inference</jtitle><date>2015-03</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><issn>2049-8764</issn><eissn>2049-8772</eissn><abstract>Graph connection Laplacian (GCL) is a modern data analysis technique that is starting to be applied for the analysis of high-dimensional and massive datasets. Motivated by this technique, we study matrices that are akin to the ones appearing in the null case of GCL, i.e. the case where there is no structure in the dataset under investigation. Developing this understanding is important in making sense of the output of the algorithms based on GCL. We hence develop a theory explaining the behavior of the spectral distribution of a large class of random matrices, in particular random matrices with random block entries of fixed size. Part of the theory covers the case where there is significant dependence between the blocks. Numerical work shows that the agreement between our theoretical predictions and numerical simulations is generally very good.</abstract><pub>Oxford University Press</pub><doi>10.1093/imaiai/iav001</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2049-8764
ispartof Information and inference, 2015-03, Vol.4 (1), p.1-44
issn 2049-8764
2049-8772
language eng
recordid cdi_crossref_primary_10_1093_imaiai_iav001
source Oxford University Press Journals All Titles (1996-Current)
title Graph connection Laplacian and random matrices with random blocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20connection%20Laplacian%20and%20random%20matrices%20with%20random%20blocks&rft.jtitle=Information%20and%20inference&rft.au=El%20Karoui,%20Noureddine&rft.date=2015-03&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.issn=2049-8764&rft.eissn=2049-8772&rft_id=info:doi/10.1093/imaiai/iav001&rft_dat=%3Coup_cross%3E10.1093/imaiai/iav001%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imaiai/iav001&rfr_iscdi=true