Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing

Suppose that the collection forms a frame for k , where each entry of the vector e i is a sub-Gaussian random variable. We consider expansions in such a frame, which are then quantized using a Sigma-Delta scheme. We show that an arbitrary signal in k can be recovered from its quantized frame coeffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and inference 2014-03, Vol.3 (1), p.40-58
Hauptverfasser: Krahmer, Felix, Saab, Rayan, Yilmaz, Özgür
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 40
container_title Information and inference
container_volume 3
creator Krahmer, Felix
Saab, Rayan
Yilmaz, Özgür
description Suppose that the collection forms a frame for k , where each entry of the vector e i is a sub-Gaussian random variable. We consider expansions in such a frame, which are then quantized using a Sigma-Delta scheme. We show that an arbitrary signal in k can be recovered from its quantized frame coefficients up to an error which decays root-exponentially in the oversampling rate m/k. Here the quantization scheme is assumed to be chosen appropriately depending on the oversampling rate and the quantization alphabet can be coarse. The result holds with high probability on the draw of the frame uniformly for all signals. The crux of the argument is a bound on the extreme singular values of the product of a deterministic matrix and a sub-Gaussian frame. For fine quantization alphabets, we leverage this bound to show polynomial error decay in the context of compressed sensing. Our results extend previous results for structured deterministic frame expansions and Gaussian compressed sensing measurements.
doi_str_mv 10.1093/imaiai/iat007
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imaiai_iat007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imaiai/iat007</oup_id><sourcerecordid>10.1093/imaiai/iat007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a5d4e82e07a4c33eb4305bc45a9948cd2848f0ae146150026518bb4af300740f3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouKx79J6jl7iTJv06yqq7woIH9VymabIE2qQ2Kah_vZGKV09v4P3eMPMIueZwy6EWWzugRbu1GAHKM7LKQNasKsvs_G8u5CXZhGBb4JLLInkrol7saUB2r_uI9H1GF-0XRusd9YaGuWV7nFMEHTUTDprqjxFdSH6g6DpqY9Jx7K1aQtFT5Ydx0iHojgadUHe6IhcG-6A3v7omb48Pr7sDOz7vn3Z3R6YE1JFh3kldZRpKlEoI3UoBeatkjnUtK9VllawMoE6n8xwgK3Jeta1EI9LHEoxYE7bsVZMPYdKmGadUy_TZcGh-SmqWkpqlpMTfLLyfx3_QbwD1a7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing</title><source>Oxford Journals - Connect here FIRST to enable access</source><creator>Krahmer, Felix ; Saab, Rayan ; Yilmaz, Özgür</creator><creatorcontrib>Krahmer, Felix ; Saab, Rayan ; Yilmaz, Özgür</creatorcontrib><description>Suppose that the collection forms a frame for k , where each entry of the vector e i is a sub-Gaussian random variable. We consider expansions in such a frame, which are then quantized using a Sigma-Delta scheme. We show that an arbitrary signal in k can be recovered from its quantized frame coefficients up to an error which decays root-exponentially in the oversampling rate m/k. Here the quantization scheme is assumed to be chosen appropriately depending on the oversampling rate and the quantization alphabet can be coarse. The result holds with high probability on the draw of the frame uniformly for all signals. The crux of the argument is a bound on the extreme singular values of the product of a deterministic matrix and a sub-Gaussian frame. For fine quantization alphabets, we leverage this bound to show polynomial error decay in the context of compressed sensing. Our results extend previous results for structured deterministic frame expansions and Gaussian compressed sensing measurements.</description><identifier>ISSN: 2049-8764</identifier><identifier>EISSN: 2049-8772</identifier><identifier>DOI: 10.1093/imaiai/iat007</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Information and inference, 2014-03, Vol.3 (1), p.40-58</ispartof><rights>The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-a5d4e82e07a4c33eb4305bc45a9948cd2848f0ae146150026518bb4af300740f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Krahmer, Felix</creatorcontrib><creatorcontrib>Saab, Rayan</creatorcontrib><creatorcontrib>Yilmaz, Özgür</creatorcontrib><title>Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing</title><title>Information and inference</title><description>Suppose that the collection forms a frame for k , where each entry of the vector e i is a sub-Gaussian random variable. We consider expansions in such a frame, which are then quantized using a Sigma-Delta scheme. We show that an arbitrary signal in k can be recovered from its quantized frame coefficients up to an error which decays root-exponentially in the oversampling rate m/k. Here the quantization scheme is assumed to be chosen appropriately depending on the oversampling rate and the quantization alphabet can be coarse. The result holds with high probability on the draw of the frame uniformly for all signals. The crux of the argument is a bound on the extreme singular values of the product of a deterministic matrix and a sub-Gaussian frame. For fine quantization alphabets, we leverage this bound to show polynomial error decay in the context of compressed sensing. Our results extend previous results for structured deterministic frame expansions and Gaussian compressed sensing measurements.</description><issn>2049-8764</issn><issn>2049-8772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouKx79J6jl7iTJv06yqq7woIH9VymabIE2qQ2Kah_vZGKV09v4P3eMPMIueZwy6EWWzugRbu1GAHKM7LKQNasKsvs_G8u5CXZhGBb4JLLInkrol7saUB2r_uI9H1GF-0XRusd9YaGuWV7nFMEHTUTDprqjxFdSH6g6DpqY9Jx7K1aQtFT5Ydx0iHojgadUHe6IhcG-6A3v7omb48Pr7sDOz7vn3Z3R6YE1JFh3kldZRpKlEoI3UoBeatkjnUtK9VllawMoE6n8xwgK3Jeta1EI9LHEoxYE7bsVZMPYdKmGadUy_TZcGh-SmqWkpqlpMTfLLyfx3_QbwD1a7g</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Krahmer, Felix</creator><creator>Saab, Rayan</creator><creator>Yilmaz, Özgür</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201403</creationdate><title>Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing</title><author>Krahmer, Felix ; Saab, Rayan ; Yilmaz, Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a5d4e82e07a4c33eb4305bc45a9948cd2848f0ae146150026518bb4af300740f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krahmer, Felix</creatorcontrib><creatorcontrib>Saab, Rayan</creatorcontrib><creatorcontrib>Yilmaz, Özgür</creatorcontrib><collection>CrossRef</collection><jtitle>Information and inference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krahmer, Felix</au><au>Saab, Rayan</au><au>Yilmaz, Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing</atitle><jtitle>Information and inference</jtitle><date>2014-03</date><risdate>2014</risdate><volume>3</volume><issue>1</issue><spage>40</spage><epage>58</epage><pages>40-58</pages><issn>2049-8764</issn><eissn>2049-8772</eissn><abstract>Suppose that the collection forms a frame for k , where each entry of the vector e i is a sub-Gaussian random variable. We consider expansions in such a frame, which are then quantized using a Sigma-Delta scheme. We show that an arbitrary signal in k can be recovered from its quantized frame coefficients up to an error which decays root-exponentially in the oversampling rate m/k. Here the quantization scheme is assumed to be chosen appropriately depending on the oversampling rate and the quantization alphabet can be coarse. The result holds with high probability on the draw of the frame uniformly for all signals. The crux of the argument is a bound on the extreme singular values of the product of a deterministic matrix and a sub-Gaussian frame. For fine quantization alphabets, we leverage this bound to show polynomial error decay in the context of compressed sensing. Our results extend previous results for structured deterministic frame expansions and Gaussian compressed sensing measurements.</abstract><pub>Oxford University Press</pub><doi>10.1093/imaiai/iat007</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2049-8764
ispartof Information and inference, 2014-03, Vol.3 (1), p.40-58
issn 2049-8764
2049-8772
language eng
recordid cdi_crossref_primary_10_1093_imaiai_iat007
source Oxford Journals - Connect here FIRST to enable access
title Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sigma-Delta%20quantization%20of%20sub-Gaussian%20frame%20expansions%20and%20its%20application%20to%20compressed%20sensing&rft.jtitle=Information%20and%20inference&rft.au=Krahmer,%20Felix&rft.date=2014-03&rft.volume=3&rft.issue=1&rft.spage=40&rft.epage=58&rft.pages=40-58&rft.issn=2049-8764&rft.eissn=2049-8772&rft_id=info:doi/10.1093/imaiai/iat007&rft_dat=%3Coup_cross%3E10.1093/imaiai/iat007%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imaiai/iat007&rfr_iscdi=true