Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model

Reports by the US Department of Energy in 2014 evaluated membrane heat pump technology as one of the most promising alternatives to conventional vapour compression methods. Vapour compression methods maintain an evaporator temperature lower than the dew point to deal with the latent heat load. In me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of low carbon technologies 2020-05, Vol.15 (2), p.299-307
Hauptverfasser: Lee, Gilbong, Roh, Chul Woo, Choi, Bong Soo, Wang, Eunseok, Ra, Ho-Sang, Cho, Junhyun, Baik, Young-Jin, Lee, Young-Soo, Shin, Hyungki, Lee, Beomjoon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 2
container_start_page 299
container_title International journal of low carbon technologies
container_volume 15
creator Lee, Gilbong
Roh, Chul Woo
Choi, Bong Soo
Wang, Eunseok
Ra, Ho-Sang
Cho, Junhyun
Baik, Young-Jin
Lee, Young-Soo
Shin, Hyungki
Lee, Beomjoon
description Reports by the US Department of Energy in 2014 evaluated membrane heat pump technology as one of the most promising alternatives to conventional vapour compression methods. Vapour compression methods maintain an evaporator temperature lower than the dew point to deal with the latent heat load. In membrane heat pump systems, only the water vapour is transferred and there is no phase change. The migration is caused by the difference in vapour pressure before and after the membrane. A vacuum pump or blower is used to create the pressure difference. However, there is no methodology for predicting dehumidification performance of membranes when used as part of a cooling system. In this study, using the assumption that there is a similarity between heat transfer and moisture pervaporation, the performance indices of the membrane are derived using a well-known heat exchanger method, the ε-NTU models. Performance estimations are calculated for two representative system layouts: bypass and vacuum. Simple relations between design parameters are suggested, giving design guidelines for researchers.
doi_str_mv 10.1093/ijlct/ctz071
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ijlct_ctz071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ijlct/ctz071</oup_id><sourcerecordid>10.1093/ijlct/ctz071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-1434d4e36527e49644698d7a5255d9896bfcbe88f0782fbb38836179eb84ab5d3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqWw8QDeWAi1YztxRlRBQaqAoZ0j_1w3qZI42KlEeS9eg2eiEAYmpnuk--lI50PokpIbSgo2q7eNGWZmeCc5PUITmnOZUJaK4z_5FJ3FuCVEFJyRCXp9geB8aFVnAEMc6lYNte-wd7iFVgfVAbZQ7dra1q4241OrCBYfQgVqwPBmKtVtIGDVqcZv9lj1ffDKVBDxLtbdBn9-JE-rNW69heYcnTjVRLj4vVO0vr9bzR-S5fPicX67TAwjYkgoZ9xyYJlIc-BFxnlWSJsrkQphC1lk2hkNUjqSy9RpzaRkGc0L0JIrLSybouux1wQfYwBX9uGwLuxLSspvXeWPrnLUdcCvRtzv-v_JL9-Jb9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Lee, Gilbong ; Roh, Chul Woo ; Choi, Bong Soo ; Wang, Eunseok ; Ra, Ho-Sang ; Cho, Junhyun ; Baik, Young-Jin ; Lee, Young-Soo ; Shin, Hyungki ; Lee, Beomjoon</creator><creatorcontrib>Lee, Gilbong ; Roh, Chul Woo ; Choi, Bong Soo ; Wang, Eunseok ; Ra, Ho-Sang ; Cho, Junhyun ; Baik, Young-Jin ; Lee, Young-Soo ; Shin, Hyungki ; Lee, Beomjoon</creatorcontrib><description>Reports by the US Department of Energy in 2014 evaluated membrane heat pump technology as one of the most promising alternatives to conventional vapour compression methods. Vapour compression methods maintain an evaporator temperature lower than the dew point to deal with the latent heat load. In membrane heat pump systems, only the water vapour is transferred and there is no phase change. The migration is caused by the difference in vapour pressure before and after the membrane. A vacuum pump or blower is used to create the pressure difference. However, there is no methodology for predicting dehumidification performance of membranes when used as part of a cooling system. In this study, using the assumption that there is a similarity between heat transfer and moisture pervaporation, the performance indices of the membrane are derived using a well-known heat exchanger method, the ε-NTU models. Performance estimations are calculated for two representative system layouts: bypass and vacuum. Simple relations between design parameters are suggested, giving design guidelines for researchers.</description><identifier>ISSN: 1748-1325</identifier><identifier>EISSN: 1748-1325</identifier><identifier>DOI: 10.1093/ijlct/ctz071</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International journal of low carbon technologies, 2020-05, Vol.15 (2), p.299-307</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-1434d4e36527e49644698d7a5255d9896bfcbe88f0782fbb38836179eb84ab5d3</citedby><cites>FETCH-LOGICAL-c305t-1434d4e36527e49644698d7a5255d9896bfcbe88f0782fbb38836179eb84ab5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27903,27904</link.rule.ids></links><search><creatorcontrib>Lee, Gilbong</creatorcontrib><creatorcontrib>Roh, Chul Woo</creatorcontrib><creatorcontrib>Choi, Bong Soo</creatorcontrib><creatorcontrib>Wang, Eunseok</creatorcontrib><creatorcontrib>Ra, Ho-Sang</creatorcontrib><creatorcontrib>Cho, Junhyun</creatorcontrib><creatorcontrib>Baik, Young-Jin</creatorcontrib><creatorcontrib>Lee, Young-Soo</creatorcontrib><creatorcontrib>Shin, Hyungki</creatorcontrib><creatorcontrib>Lee, Beomjoon</creatorcontrib><title>Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model</title><title>International journal of low carbon technologies</title><description>Reports by the US Department of Energy in 2014 evaluated membrane heat pump technology as one of the most promising alternatives to conventional vapour compression methods. Vapour compression methods maintain an evaporator temperature lower than the dew point to deal with the latent heat load. In membrane heat pump systems, only the water vapour is transferred and there is no phase change. The migration is caused by the difference in vapour pressure before and after the membrane. A vacuum pump or blower is used to create the pressure difference. However, there is no methodology for predicting dehumidification performance of membranes when used as part of a cooling system. In this study, using the assumption that there is a similarity between heat transfer and moisture pervaporation, the performance indices of the membrane are derived using a well-known heat exchanger method, the ε-NTU models. Performance estimations are calculated for two representative system layouts: bypass and vacuum. Simple relations between design parameters are suggested, giving design guidelines for researchers.</description><issn>1748-1325</issn><issn>1748-1325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kL1OwzAUhS0EEqWw8QDeWAi1YztxRlRBQaqAoZ0j_1w3qZI42KlEeS9eg2eiEAYmpnuk--lI50PokpIbSgo2q7eNGWZmeCc5PUITmnOZUJaK4z_5FJ3FuCVEFJyRCXp9geB8aFVnAEMc6lYNte-wd7iFVgfVAbZQ7dra1q4241OrCBYfQgVqwPBmKtVtIGDVqcZv9lj1ffDKVBDxLtbdBn9-JE-rNW69heYcnTjVRLj4vVO0vr9bzR-S5fPicX67TAwjYkgoZ9xyYJlIc-BFxnlWSJsrkQphC1lk2hkNUjqSy9RpzaRkGc0L0JIrLSybouux1wQfYwBX9uGwLuxLSspvXeWPrnLUdcCvRtzv-v_JL9-Jb9A</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lee, Gilbong</creator><creator>Roh, Chul Woo</creator><creator>Choi, Bong Soo</creator><creator>Wang, Eunseok</creator><creator>Ra, Ho-Sang</creator><creator>Cho, Junhyun</creator><creator>Baik, Young-Jin</creator><creator>Lee, Young-Soo</creator><creator>Shin, Hyungki</creator><creator>Lee, Beomjoon</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model</title><author>Lee, Gilbong ; Roh, Chul Woo ; Choi, Bong Soo ; Wang, Eunseok ; Ra, Ho-Sang ; Cho, Junhyun ; Baik, Young-Jin ; Lee, Young-Soo ; Shin, Hyungki ; Lee, Beomjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-1434d4e36527e49644698d7a5255d9896bfcbe88f0782fbb38836179eb84ab5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gilbong</creatorcontrib><creatorcontrib>Roh, Chul Woo</creatorcontrib><creatorcontrib>Choi, Bong Soo</creatorcontrib><creatorcontrib>Wang, Eunseok</creatorcontrib><creatorcontrib>Ra, Ho-Sang</creatorcontrib><creatorcontrib>Cho, Junhyun</creatorcontrib><creatorcontrib>Baik, Young-Jin</creatorcontrib><creatorcontrib>Lee, Young-Soo</creatorcontrib><creatorcontrib>Shin, Hyungki</creatorcontrib><creatorcontrib>Lee, Beomjoon</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>International journal of low carbon technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gilbong</au><au>Roh, Chul Woo</au><au>Choi, Bong Soo</au><au>Wang, Eunseok</au><au>Ra, Ho-Sang</au><au>Cho, Junhyun</au><au>Baik, Young-Jin</au><au>Lee, Young-Soo</au><au>Shin, Hyungki</au><au>Lee, Beomjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model</atitle><jtitle>International journal of low carbon technologies</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>1748-1325</issn><eissn>1748-1325</eissn><abstract>Reports by the US Department of Energy in 2014 evaluated membrane heat pump technology as one of the most promising alternatives to conventional vapour compression methods. Vapour compression methods maintain an evaporator temperature lower than the dew point to deal with the latent heat load. In membrane heat pump systems, only the water vapour is transferred and there is no phase change. The migration is caused by the difference in vapour pressure before and after the membrane. A vacuum pump or blower is used to create the pressure difference. However, there is no methodology for predicting dehumidification performance of membranes when used as part of a cooling system. In this study, using the assumption that there is a similarity between heat transfer and moisture pervaporation, the performance indices of the membrane are derived using a well-known heat exchanger method, the ε-NTU models. Performance estimations are calculated for two representative system layouts: bypass and vacuum. Simple relations between design parameters are suggested, giving design guidelines for researchers.</abstract><pub>Oxford University Press</pub><doi>10.1093/ijlct/ctz071</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1325
ispartof International journal of low carbon technologies, 2020-05, Vol.15 (2), p.299-307
issn 1748-1325
1748-1325
language eng
recordid cdi_crossref_primary_10_1093_ijlct_ctz071
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection
title Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20estimation%20of%20membrane%20dehumidification%20based%20on%20heat%20exchanger%20analogy%20approaches%20using%20%CE%B5-NTU%20model&rft.jtitle=International%20journal%20of%20low%20carbon%20technologies&rft.au=Lee,%20Gilbong&rft.date=2020-05-01&rft.volume=15&rft.issue=2&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=1748-1325&rft.eissn=1748-1325&rft_id=info:doi/10.1093/ijlct/ctz071&rft_dat=%3Coup_cross%3E10.1093/ijlct/ctz071%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ijlct/ctz071&rfr_iscdi=true