Exact mixed-integer quadratic formulation and solution for large-scale thermal unit commitment

Abstract Thermal unit commitment (UC) is a nonlinear combinatorial optimization problem that minimizes total operating costs while considering system load balance, on/off restrictions and other constraints. Successfully solving the thermal UC problem contributes to a more reliable power system and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of low carbon technologies 2024-01, Vol.19, p.1003-1012
Hauptverfasser: Kang, Chuanxiong, Wang, Yongwen, Wu, Shaofei, Ding, Guili, Chen, Chen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue
container_start_page 1003
container_title International journal of low carbon technologies
container_volume 19
creator Kang, Chuanxiong
Wang, Yongwen
Wu, Shaofei
Ding, Guili
Chen, Chen
description Abstract Thermal unit commitment (UC) is a nonlinear combinatorial optimization problem that minimizes total operating costs while considering system load balance, on/off restrictions and other constraints. Successfully solving the thermal UC problem contributes to a more reliable power system and reduces thermal costs. This paper presents an exact mixed-integer quadratic programming (EMIQP) method for large-scale thermal UC problems. EMIQP revolutionizes the landscape by seamlessly translating the intricate nonlinear combinatorial optimization problem of UC into an exact mixed-integer quadratic formulation. This approach also elegantly reimagines on/off constraints as mixed-integer linear equations, employing both the sum and respective approaches. Our case studies unequivocally demonstrate the exceptional prowess of the EMIQP method, consistently securing the global optimum. Moreover, the mathematical-based EMIQP method produces identical results at each run, which is extremely important for UC in the real world.
doi_str_mv 10.1093/ijlct/ctae042
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ijlct_ctae042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ijlct/ctae042</oup_id><sourcerecordid>10.1093/ijlct/ctae042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-798603e41df0cf07e62cffd71d8916c9a1daba24e8c98e243795f2a3a2602f533</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRS0EEiFQ0rukMfFjXy5RFAhSJBpoWQ32ODiyd4PXK4W_JyQp6Kjmju7RLQ4ht4LfC67VzG-CyTOTAXkhz8hE1EXDhJLl-Z98Sa6GYcN5qQvFJ-R9sQOTafQ7tMx3GdeY6NcINkH2hro-xTHsY99R6Cwd-jAenn1BA6Q1ssFAQJo_MUUIdOx8pqaP0eeIXb4mFw7CgDenOyVvj4vX-ZKtXp6e5w8rZmRVZlbrpuIKC2EdN47XWEnjnK2FbbSojAZh4QNkgY3RDcpC1bp0EhTIiktXKjUl7LhrUj8MCV27TT5C-m4Fb3_ltAc57UnOnr878v24_Qf9ARY5ag0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact mixed-integer quadratic formulation and solution for large-scale thermal unit commitment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Kang, Chuanxiong ; Wang, Yongwen ; Wu, Shaofei ; Ding, Guili ; Chen, Chen</creator><creatorcontrib>Kang, Chuanxiong ; Wang, Yongwen ; Wu, Shaofei ; Ding, Guili ; Chen, Chen</creatorcontrib><description>Abstract Thermal unit commitment (UC) is a nonlinear combinatorial optimization problem that minimizes total operating costs while considering system load balance, on/off restrictions and other constraints. Successfully solving the thermal UC problem contributes to a more reliable power system and reduces thermal costs. This paper presents an exact mixed-integer quadratic programming (EMIQP) method for large-scale thermal UC problems. EMIQP revolutionizes the landscape by seamlessly translating the intricate nonlinear combinatorial optimization problem of UC into an exact mixed-integer quadratic formulation. This approach also elegantly reimagines on/off constraints as mixed-integer linear equations, employing both the sum and respective approaches. Our case studies unequivocally demonstrate the exceptional prowess of the EMIQP method, consistently securing the global optimum. Moreover, the mathematical-based EMIQP method produces identical results at each run, which is extremely important for UC in the real world.</description><identifier>ISSN: 1748-1325</identifier><identifier>EISSN: 1748-1325</identifier><identifier>DOI: 10.1093/ijlct/ctae042</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International journal of low carbon technologies, 2024-01, Vol.19, p.1003-1012</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-798603e41df0cf07e62cffd71d8916c9a1daba24e8c98e243795f2a3a2602f533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,1601,27911,27912</link.rule.ids></links><search><creatorcontrib>Kang, Chuanxiong</creatorcontrib><creatorcontrib>Wang, Yongwen</creatorcontrib><creatorcontrib>Wu, Shaofei</creatorcontrib><creatorcontrib>Ding, Guili</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><title>Exact mixed-integer quadratic formulation and solution for large-scale thermal unit commitment</title><title>International journal of low carbon technologies</title><description>Abstract Thermal unit commitment (UC) is a nonlinear combinatorial optimization problem that minimizes total operating costs while considering system load balance, on/off restrictions and other constraints. Successfully solving the thermal UC problem contributes to a more reliable power system and reduces thermal costs. This paper presents an exact mixed-integer quadratic programming (EMIQP) method for large-scale thermal UC problems. EMIQP revolutionizes the landscape by seamlessly translating the intricate nonlinear combinatorial optimization problem of UC into an exact mixed-integer quadratic formulation. This approach also elegantly reimagines on/off constraints as mixed-integer linear equations, employing both the sum and respective approaches. Our case studies unequivocally demonstrate the exceptional prowess of the EMIQP method, consistently securing the global optimum. Moreover, the mathematical-based EMIQP method produces identical results at each run, which is extremely important for UC in the real world.</description><issn>1748-1325</issn><issn>1748-1325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkLtOAzEQRS0EEiFQ0rukMfFjXy5RFAhSJBpoWQ32ODiyd4PXK4W_JyQp6Kjmju7RLQ4ht4LfC67VzG-CyTOTAXkhz8hE1EXDhJLl-Z98Sa6GYcN5qQvFJ-R9sQOTafQ7tMx3GdeY6NcINkH2hro-xTHsY99R6Cwd-jAenn1BA6Q1ssFAQJo_MUUIdOx8pqaP0eeIXb4mFw7CgDenOyVvj4vX-ZKtXp6e5w8rZmRVZlbrpuIKC2EdN47XWEnjnK2FbbSojAZh4QNkgY3RDcpC1bp0EhTIiktXKjUl7LhrUj8MCV27TT5C-m4Fb3_ltAc57UnOnr878v24_Qf9ARY5ag0</recordid><startdate>20240118</startdate><enddate>20240118</enddate><creator>Kang, Chuanxiong</creator><creator>Wang, Yongwen</creator><creator>Wu, Shaofei</creator><creator>Ding, Guili</creator><creator>Chen, Chen</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240118</creationdate><title>Exact mixed-integer quadratic formulation and solution for large-scale thermal unit commitment</title><author>Kang, Chuanxiong ; Wang, Yongwen ; Wu, Shaofei ; Ding, Guili ; Chen, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-798603e41df0cf07e62cffd71d8916c9a1daba24e8c98e243795f2a3a2602f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chuanxiong</creatorcontrib><creatorcontrib>Wang, Yongwen</creatorcontrib><creatorcontrib>Wu, Shaofei</creatorcontrib><creatorcontrib>Ding, Guili</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>International journal of low carbon technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Chuanxiong</au><au>Wang, Yongwen</au><au>Wu, Shaofei</au><au>Ding, Guili</au><au>Chen, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact mixed-integer quadratic formulation and solution for large-scale thermal unit commitment</atitle><jtitle>International journal of low carbon technologies</jtitle><date>2024-01-18</date><risdate>2024</risdate><volume>19</volume><spage>1003</spage><epage>1012</epage><pages>1003-1012</pages><issn>1748-1325</issn><eissn>1748-1325</eissn><abstract>Abstract Thermal unit commitment (UC) is a nonlinear combinatorial optimization problem that minimizes total operating costs while considering system load balance, on/off restrictions and other constraints. Successfully solving the thermal UC problem contributes to a more reliable power system and reduces thermal costs. This paper presents an exact mixed-integer quadratic programming (EMIQP) method for large-scale thermal UC problems. EMIQP revolutionizes the landscape by seamlessly translating the intricate nonlinear combinatorial optimization problem of UC into an exact mixed-integer quadratic formulation. This approach also elegantly reimagines on/off constraints as mixed-integer linear equations, employing both the sum and respective approaches. Our case studies unequivocally demonstrate the exceptional prowess of the EMIQP method, consistently securing the global optimum. Moreover, the mathematical-based EMIQP method produces identical results at each run, which is extremely important for UC in the real world.</abstract><pub>Oxford University Press</pub><doi>10.1093/ijlct/ctae042</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1325
ispartof International journal of low carbon technologies, 2024-01, Vol.19, p.1003-1012
issn 1748-1325
1748-1325
language eng
recordid cdi_crossref_primary_10_1093_ijlct_ctae042
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection
title Exact mixed-integer quadratic formulation and solution for large-scale thermal unit commitment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20mixed-integer%20quadratic%20formulation%20and%20solution%20for%20large-scale%20thermal%20unit%20commitment&rft.jtitle=International%20journal%20of%20low%20carbon%20technologies&rft.au=Kang,%20Chuanxiong&rft.date=2024-01-18&rft.volume=19&rft.spage=1003&rft.epage=1012&rft.pages=1003-1012&rft.issn=1748-1325&rft.eissn=1748-1325&rft_id=info:doi/10.1093/ijlct/ctae042&rft_dat=%3Coup_cross%3E10.1093/ijlct/ctae042%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ijlct/ctae042&rfr_iscdi=true