Model analysis of energy consumption data for green building using deep learning neural network

Abstract The purposes are to solve the defects of traditional backpropagation neural network (BPNN), such as inclined local extremum and slow convergence, as well as the incomplete data acquisition of building energy consumption (EC). Firstly, a green building (GB)-oriented EC data generation model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of low carbon technologies 2022-02, Vol.17, p.233-244
Hauptverfasser: Yu, Mingyu, Li, Lihong, Guo, Zhenxu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue
container_start_page 233
container_title International journal of low carbon technologies
container_volume 17
creator Yu, Mingyu
Li, Lihong
Guo, Zhenxu
description Abstract The purposes are to solve the defects of traditional backpropagation neural network (BPNN), such as inclined local extremum and slow convergence, as well as the incomplete data acquisition of building energy consumption (EC). Firstly, a green building (GB)-oriented EC data generation model based on generative adversarial networks (GANs) is implemented; GAN can learn the hidden laws of raw data and produce enhanced virtual data. Secondly, the GB-oriented EC prediction model based on Levenberg Marquardt-optimized BPNN is implemented and used for building EC prediction. Finally, the effectiveness of the proposed model is verified by real building EC data. The results show that the data enhanced by the GAN model can reduce the model prediction error; the optimized BPNN model has lower prediction error and better performance than other models. The purpose of this study is to provide important technical support for the improvement and prediction of GB energy data.
doi_str_mv 10.1093/ijlct/ctab100
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ijlct_ctab100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ijlct/ctab100</oup_id><sourcerecordid>10.1093/ijlct/ctab100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-53089344a6a24a5d77da934584741fc4bb83462efabb354bed3fb4bbfb9d513f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUwsntkCbVju0lGVPElFbHAHJ3jc5Ti2pGdCOXfk9IObCz33nt6dMNDyC1n95xVYtXtXDOsmgE0Z-yMLHghy4yLXJ3_2S_JVUo7xlQlBVuQ-i0YdBQ8uCl1iQZL0WNsJ9oEn8Z9P3TBUwMDUBsibSOip3rsnOl8S8d0mAaxpw4h-kPzOEZwcwzfIX5dkwsLLuHNKZfk8-nxY_OSbd-fXzcP26wRrBoyJVhZCSlhDbkEZYrCwNxVKQvJbSO1LoVc52hBa6GkRiOsnq9WV0ZxYcWSZMe_TQwpRbR1H7s9xKnmrD7YqX_t1Cc7M3935MPY_4P-ACkEaks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model analysis of energy consumption data for green building using deep learning neural network</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Mingyu ; Li, Lihong ; Guo, Zhenxu</creator><creatorcontrib>Yu, Mingyu ; Li, Lihong ; Guo, Zhenxu</creatorcontrib><description>Abstract The purposes are to solve the defects of traditional backpropagation neural network (BPNN), such as inclined local extremum and slow convergence, as well as the incomplete data acquisition of building energy consumption (EC). Firstly, a green building (GB)-oriented EC data generation model based on generative adversarial networks (GANs) is implemented; GAN can learn the hidden laws of raw data and produce enhanced virtual data. Secondly, the GB-oriented EC prediction model based on Levenberg Marquardt-optimized BPNN is implemented and used for building EC prediction. Finally, the effectiveness of the proposed model is verified by real building EC data. The results show that the data enhanced by the GAN model can reduce the model prediction error; the optimized BPNN model has lower prediction error and better performance than other models. The purpose of this study is to provide important technical support for the improvement and prediction of GB energy data.</description><identifier>ISSN: 1748-1325</identifier><identifier>EISSN: 1748-1325</identifier><identifier>DOI: 10.1093/ijlct/ctab100</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International journal of low carbon technologies, 2022-02, Vol.17, p.233-244</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-53089344a6a24a5d77da934584741fc4bb83462efabb354bed3fb4bbfb9d513f3</citedby><cites>FETCH-LOGICAL-c309t-53089344a6a24a5d77da934584741fc4bb83462efabb354bed3fb4bbfb9d513f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Mingyu</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Guo, Zhenxu</creatorcontrib><title>Model analysis of energy consumption data for green building using deep learning neural network</title><title>International journal of low carbon technologies</title><description>Abstract The purposes are to solve the defects of traditional backpropagation neural network (BPNN), such as inclined local extremum and slow convergence, as well as the incomplete data acquisition of building energy consumption (EC). Firstly, a green building (GB)-oriented EC data generation model based on generative adversarial networks (GANs) is implemented; GAN can learn the hidden laws of raw data and produce enhanced virtual data. Secondly, the GB-oriented EC prediction model based on Levenberg Marquardt-optimized BPNN is implemented and used for building EC prediction. Finally, the effectiveness of the proposed model is verified by real building EC data. The results show that the data enhanced by the GAN model can reduce the model prediction error; the optimized BPNN model has lower prediction error and better performance than other models. The purpose of this study is to provide important technical support for the improvement and prediction of GB energy data.</description><issn>1748-1325</issn><issn>1748-1325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkD1PwzAQhi0EEqUwsntkCbVju0lGVPElFbHAHJ3jc5Ti2pGdCOXfk9IObCz33nt6dMNDyC1n95xVYtXtXDOsmgE0Z-yMLHghy4yLXJ3_2S_JVUo7xlQlBVuQ-i0YdBQ8uCl1iQZL0WNsJ9oEn8Z9P3TBUwMDUBsibSOip3rsnOl8S8d0mAaxpw4h-kPzOEZwcwzfIX5dkwsLLuHNKZfk8-nxY_OSbd-fXzcP26wRrBoyJVhZCSlhDbkEZYrCwNxVKQvJbSO1LoVc52hBa6GkRiOsnq9WV0ZxYcWSZMe_TQwpRbR1H7s9xKnmrD7YqX_t1Cc7M3935MPY_4P-ACkEaks</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>Yu, Mingyu</creator><creator>Li, Lihong</creator><creator>Guo, Zhenxu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220208</creationdate><title>Model analysis of energy consumption data for green building using deep learning neural network</title><author>Yu, Mingyu ; Li, Lihong ; Guo, Zhenxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-53089344a6a24a5d77da934584741fc4bb83462efabb354bed3fb4bbfb9d513f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Mingyu</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Guo, Zhenxu</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>International journal of low carbon technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Mingyu</au><au>Li, Lihong</au><au>Guo, Zhenxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model analysis of energy consumption data for green building using deep learning neural network</atitle><jtitle>International journal of low carbon technologies</jtitle><date>2022-02-08</date><risdate>2022</risdate><volume>17</volume><spage>233</spage><epage>244</epage><pages>233-244</pages><issn>1748-1325</issn><eissn>1748-1325</eissn><abstract>Abstract The purposes are to solve the defects of traditional backpropagation neural network (BPNN), such as inclined local extremum and slow convergence, as well as the incomplete data acquisition of building energy consumption (EC). Firstly, a green building (GB)-oriented EC data generation model based on generative adversarial networks (GANs) is implemented; GAN can learn the hidden laws of raw data and produce enhanced virtual data. Secondly, the GB-oriented EC prediction model based on Levenberg Marquardt-optimized BPNN is implemented and used for building EC prediction. Finally, the effectiveness of the proposed model is verified by real building EC data. The results show that the data enhanced by the GAN model can reduce the model prediction error; the optimized BPNN model has lower prediction error and better performance than other models. The purpose of this study is to provide important technical support for the improvement and prediction of GB energy data.</abstract><pub>Oxford University Press</pub><doi>10.1093/ijlct/ctab100</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1325
ispartof International journal of low carbon technologies, 2022-02, Vol.17, p.233-244
issn 1748-1325
1748-1325
language eng
recordid cdi_crossref_primary_10_1093_ijlct_ctab100
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Model analysis of energy consumption data for green building using deep learning neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20analysis%20of%20energy%20consumption%20data%20for%20green%20building%20using%20deep%20learning%20neural%20network&rft.jtitle=International%20journal%20of%20low%20carbon%20technologies&rft.au=Yu,%20Mingyu&rft.date=2022-02-08&rft.volume=17&rft.spage=233&rft.epage=244&rft.pages=233-244&rft.issn=1748-1325&rft.eissn=1748-1325&rft_id=info:doi/10.1093/ijlct/ctab100&rft_dat=%3Coup_cross%3E10.1093/ijlct/ctab100%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ijlct/ctab100&rfr_iscdi=true