Performance evaluation of data-limited, length-based stock assessment methods

Abstract Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICES journal of marine science 2020-01, Vol.77 (1), p.97-108
Hauptverfasser: Chong, Lisa, Mildenberger, Tobias K, Rudd, Merrill B, Taylor, Marc H, Cope, Jason M, Branch, Trevor A, Wolff, Matthias, Stäbler, Moritz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1
container_start_page 97
container_title ICES journal of marine science
container_volume 77
creator Chong, Lisa
Mildenberger, Tobias K
Rudd, Merrill B
Taylor, Marc H
Cope, Jason M
Branch, Trevor A
Wolff, Matthias
Stäbler, Moritz
description Abstract Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.
doi_str_mv 10.1093/icesjms/fsz212
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_icesjms_fsz212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icesjms/fsz212</oup_id><sourcerecordid>10.1093/icesjms/fsz212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnvcquO1-ZJPsUYpfUNGDnsNkd2JTk2zJbAX99ba0d0_v8DLPMDyMXSs5U9KZeeuR1j3NG_rVSp-wya61wunSne5nmwmjjDtnF0RrKWWR5XLCXt5wbOLYw-CR4zd0W0htHHhseIAEomv7NmG45R0On2klaiAMnFL0XxyIkKjHIfEe0yoGumRnDXSEV8ecso-H-_fFk1i-Pj4v7pbC715Ioq5DCErnxpUWocgBgm802FJqWWPusQiFMYDa2ExLq6wxSmNwufPKWZ-ZKZsd7voxEo3YVJux7WH8qZSs9jKqo4zqIGMH3ByAuN38t_sHcVFk3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance evaluation of data-limited, length-based stock assessment methods</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Chong, Lisa ; Mildenberger, Tobias K ; Rudd, Merrill B ; Taylor, Marc H ; Cope, Jason M ; Branch, Trevor A ; Wolff, Matthias ; Stäbler, Moritz</creator><contributor>Anderson, Emory</contributor><creatorcontrib>Chong, Lisa ; Mildenberger, Tobias K ; Rudd, Merrill B ; Taylor, Marc H ; Cope, Jason M ; Branch, Trevor A ; Wolff, Matthias ; Stäbler, Moritz ; Anderson, Emory</creatorcontrib><description>Abstract Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.</description><identifier>ISSN: 1054-3139</identifier><identifier>EISSN: 1095-9289</identifier><identifier>DOI: 10.1093/icesjms/fsz212</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>ICES journal of marine science, 2020-01, Vol.77 (1), p.97-108</ispartof><rights>International Council for the Exploration of the Sea 2019. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</citedby><cites>FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</cites><orcidid>0000-0002-6631-7524 ; 0000-0001-9766-2446 ; 0000-0001-9730-6994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/icesjms/fsz212$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><contributor>Anderson, Emory</contributor><creatorcontrib>Chong, Lisa</creatorcontrib><creatorcontrib>Mildenberger, Tobias K</creatorcontrib><creatorcontrib>Rudd, Merrill B</creatorcontrib><creatorcontrib>Taylor, Marc H</creatorcontrib><creatorcontrib>Cope, Jason M</creatorcontrib><creatorcontrib>Branch, Trevor A</creatorcontrib><creatorcontrib>Wolff, Matthias</creatorcontrib><creatorcontrib>Stäbler, Moritz</creatorcontrib><title>Performance evaluation of data-limited, length-based stock assessment methods</title><title>ICES journal of marine science</title><description>Abstract Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.</description><issn>1054-3139</issn><issn>1095-9289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnvcquO1-ZJPsUYpfUNGDnsNkd2JTk2zJbAX99ba0d0_v8DLPMDyMXSs5U9KZeeuR1j3NG_rVSp-wya61wunSne5nmwmjjDtnF0RrKWWR5XLCXt5wbOLYw-CR4zd0W0htHHhseIAEomv7NmG45R0On2klaiAMnFL0XxyIkKjHIfEe0yoGumRnDXSEV8ecso-H-_fFk1i-Pj4v7pbC715Ioq5DCErnxpUWocgBgm802FJqWWPusQiFMYDa2ExLq6wxSmNwufPKWZ-ZKZsd7voxEo3YVJux7WH8qZSs9jKqo4zqIGMH3ByAuN38t_sHcVFk3A</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chong, Lisa</creator><creator>Mildenberger, Tobias K</creator><creator>Rudd, Merrill B</creator><creator>Taylor, Marc H</creator><creator>Cope, Jason M</creator><creator>Branch, Trevor A</creator><creator>Wolff, Matthias</creator><creator>Stäbler, Moritz</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6631-7524</orcidid><orcidid>https://orcid.org/0000-0001-9766-2446</orcidid><orcidid>https://orcid.org/0000-0001-9730-6994</orcidid></search><sort><creationdate>20200101</creationdate><title>Performance evaluation of data-limited, length-based stock assessment methods</title><author>Chong, Lisa ; Mildenberger, Tobias K ; Rudd, Merrill B ; Taylor, Marc H ; Cope, Jason M ; Branch, Trevor A ; Wolff, Matthias ; Stäbler, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Lisa</creatorcontrib><creatorcontrib>Mildenberger, Tobias K</creatorcontrib><creatorcontrib>Rudd, Merrill B</creatorcontrib><creatorcontrib>Taylor, Marc H</creatorcontrib><creatorcontrib>Cope, Jason M</creatorcontrib><creatorcontrib>Branch, Trevor A</creatorcontrib><creatorcontrib>Wolff, Matthias</creatorcontrib><creatorcontrib>Stäbler, Moritz</creatorcontrib><collection>CrossRef</collection><jtitle>ICES journal of marine science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Lisa</au><au>Mildenberger, Tobias K</au><au>Rudd, Merrill B</au><au>Taylor, Marc H</au><au>Cope, Jason M</au><au>Branch, Trevor A</au><au>Wolff, Matthias</au><au>Stäbler, Moritz</au><au>Anderson, Emory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of data-limited, length-based stock assessment methods</atitle><jtitle>ICES journal of marine science</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>77</volume><issue>1</issue><spage>97</spage><epage>108</epage><pages>97-108</pages><issn>1054-3139</issn><eissn>1095-9289</eissn><abstract>Abstract Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.</abstract><pub>Oxford University Press</pub><doi>10.1093/icesjms/fsz212</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6631-7524</orcidid><orcidid>https://orcid.org/0000-0001-9766-2446</orcidid><orcidid>https://orcid.org/0000-0001-9730-6994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1054-3139
ispartof ICES journal of marine science, 2020-01, Vol.77 (1), p.97-108
issn 1054-3139
1095-9289
language eng
recordid cdi_crossref_primary_10_1093_icesjms_fsz212
source Access via Oxford University Press (Open Access Collection)
title Performance evaluation of data-limited, length-based stock assessment methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20data-limited,%20length-based%20stock%20assessment%20methods&rft.jtitle=ICES%20journal%20of%20marine%20science&rft.au=Chong,%20Lisa&rft.date=2020-01-01&rft.volume=77&rft.issue=1&rft.spage=97&rft.epage=108&rft.pages=97-108&rft.issn=1054-3139&rft.eissn=1095-9289&rft_id=info:doi/10.1093/icesjms/fsz212&rft_dat=%3Coup_TOX%3E10.1093/icesjms/fsz212%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/icesjms/fsz212&rfr_iscdi=true