Performance evaluation of data-limited, length-based stock assessment methods
Abstract Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of...
Gespeichert in:
Veröffentlicht in: | ICES journal of marine science 2020-01, Vol.77 (1), p.97-108 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | ICES journal of marine science |
container_volume | 77 |
creator | Chong, Lisa Mildenberger, Tobias K Rudd, Merrill B Taylor, Marc H Cope, Jason M Branch, Trevor A Wolff, Matthias Stäbler, Moritz |
description | Abstract
Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations. |
doi_str_mv | 10.1093/icesjms/fsz212 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_icesjms_fsz212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icesjms/fsz212</oup_id><sourcerecordid>10.1093/icesjms/fsz212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnvcquO1-ZJPsUYpfUNGDnsNkd2JTk2zJbAX99ba0d0_v8DLPMDyMXSs5U9KZeeuR1j3NG_rVSp-wya61wunSne5nmwmjjDtnF0RrKWWR5XLCXt5wbOLYw-CR4zd0W0htHHhseIAEomv7NmG45R0On2klaiAMnFL0XxyIkKjHIfEe0yoGumRnDXSEV8ecso-H-_fFk1i-Pj4v7pbC715Ioq5DCErnxpUWocgBgm802FJqWWPusQiFMYDa2ExLq6wxSmNwufPKWZ-ZKZsd7voxEo3YVJux7WH8qZSs9jKqo4zqIGMH3ByAuN38t_sHcVFk3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance evaluation of data-limited, length-based stock assessment methods</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Chong, Lisa ; Mildenberger, Tobias K ; Rudd, Merrill B ; Taylor, Marc H ; Cope, Jason M ; Branch, Trevor A ; Wolff, Matthias ; Stäbler, Moritz</creator><contributor>Anderson, Emory</contributor><creatorcontrib>Chong, Lisa ; Mildenberger, Tobias K ; Rudd, Merrill B ; Taylor, Marc H ; Cope, Jason M ; Branch, Trevor A ; Wolff, Matthias ; Stäbler, Moritz ; Anderson, Emory</creatorcontrib><description>Abstract
Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.</description><identifier>ISSN: 1054-3139</identifier><identifier>EISSN: 1095-9289</identifier><identifier>DOI: 10.1093/icesjms/fsz212</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>ICES journal of marine science, 2020-01, Vol.77 (1), p.97-108</ispartof><rights>International Council for the Exploration of the Sea 2019. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</citedby><cites>FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</cites><orcidid>0000-0002-6631-7524 ; 0000-0001-9766-2446 ; 0000-0001-9730-6994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/icesjms/fsz212$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><contributor>Anderson, Emory</contributor><creatorcontrib>Chong, Lisa</creatorcontrib><creatorcontrib>Mildenberger, Tobias K</creatorcontrib><creatorcontrib>Rudd, Merrill B</creatorcontrib><creatorcontrib>Taylor, Marc H</creatorcontrib><creatorcontrib>Cope, Jason M</creatorcontrib><creatorcontrib>Branch, Trevor A</creatorcontrib><creatorcontrib>Wolff, Matthias</creatorcontrib><creatorcontrib>Stäbler, Moritz</creatorcontrib><title>Performance evaluation of data-limited, length-based stock assessment methods</title><title>ICES journal of marine science</title><description>Abstract
Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.</description><issn>1054-3139</issn><issn>1095-9289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnvcquO1-ZJPsUYpfUNGDnsNkd2JTk2zJbAX99ba0d0_v8DLPMDyMXSs5U9KZeeuR1j3NG_rVSp-wya61wunSne5nmwmjjDtnF0RrKWWR5XLCXt5wbOLYw-CR4zd0W0htHHhseIAEomv7NmG45R0On2klaiAMnFL0XxyIkKjHIfEe0yoGumRnDXSEV8ecso-H-_fFk1i-Pj4v7pbC715Ioq5DCErnxpUWocgBgm802FJqWWPusQiFMYDa2ExLq6wxSmNwufPKWZ-ZKZsd7voxEo3YVJux7WH8qZSs9jKqo4zqIGMH3ByAuN38t_sHcVFk3A</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chong, Lisa</creator><creator>Mildenberger, Tobias K</creator><creator>Rudd, Merrill B</creator><creator>Taylor, Marc H</creator><creator>Cope, Jason M</creator><creator>Branch, Trevor A</creator><creator>Wolff, Matthias</creator><creator>Stäbler, Moritz</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6631-7524</orcidid><orcidid>https://orcid.org/0000-0001-9766-2446</orcidid><orcidid>https://orcid.org/0000-0001-9730-6994</orcidid></search><sort><creationdate>20200101</creationdate><title>Performance evaluation of data-limited, length-based stock assessment methods</title><author>Chong, Lisa ; Mildenberger, Tobias K ; Rudd, Merrill B ; Taylor, Marc H ; Cope, Jason M ; Branch, Trevor A ; Wolff, Matthias ; Stäbler, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-bbddd1263985ea76aadcf2a58020be6ce7d733ae2354205153312ed969c195c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Lisa</creatorcontrib><creatorcontrib>Mildenberger, Tobias K</creatorcontrib><creatorcontrib>Rudd, Merrill B</creatorcontrib><creatorcontrib>Taylor, Marc H</creatorcontrib><creatorcontrib>Cope, Jason M</creatorcontrib><creatorcontrib>Branch, Trevor A</creatorcontrib><creatorcontrib>Wolff, Matthias</creatorcontrib><creatorcontrib>Stäbler, Moritz</creatorcontrib><collection>CrossRef</collection><jtitle>ICES journal of marine science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Lisa</au><au>Mildenberger, Tobias K</au><au>Rudd, Merrill B</au><au>Taylor, Marc H</au><au>Cope, Jason M</au><au>Branch, Trevor A</au><au>Wolff, Matthias</au><au>Stäbler, Moritz</au><au>Anderson, Emory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of data-limited, length-based stock assessment methods</atitle><jtitle>ICES journal of marine science</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>77</volume><issue>1</issue><spage>97</spage><epage>108</epage><pages>97-108</pages><issn>1054-3139</issn><eissn>1095-9289</eissn><abstract>Abstract
Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ratio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status, and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which methods to employ in various situations.</abstract><pub>Oxford University Press</pub><doi>10.1093/icesjms/fsz212</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6631-7524</orcidid><orcidid>https://orcid.org/0000-0001-9766-2446</orcidid><orcidid>https://orcid.org/0000-0001-9730-6994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1054-3139 |
ispartof | ICES journal of marine science, 2020-01, Vol.77 (1), p.97-108 |
issn | 1054-3139 1095-9289 |
language | eng |
recordid | cdi_crossref_primary_10_1093_icesjms_fsz212 |
source | Access via Oxford University Press (Open Access Collection) |
title | Performance evaluation of data-limited, length-based stock assessment methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20data-limited,%20length-based%20stock%20assessment%20methods&rft.jtitle=ICES%20journal%20of%20marine%20science&rft.au=Chong,%20Lisa&rft.date=2020-01-01&rft.volume=77&rft.issue=1&rft.spage=97&rft.epage=108&rft.pages=97-108&rft.issn=1054-3139&rft.eissn=1095-9289&rft_id=info:doi/10.1093/icesjms/fsz212&rft_dat=%3Coup_TOX%3E10.1093/icesjms/fsz212%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/icesjms/fsz212&rfr_iscdi=true |