Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models
Abstract In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physica...
Gespeichert in:
Veröffentlicht in: | ICES journal of marine science 2023-09, Vol.80 (7), p.1991-2007 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2007 |
---|---|
container_issue | 7 |
container_start_page | 1991 |
container_title | ICES journal of marine science |
container_volume | 80 |
creator | Grüss, A Charsley, A R Thorson, J T Anderson, O F O'Driscoll, R L Wood, B Breivik, O N O’Leary, C A |
description | Abstract
In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physical barriers (islands, convoluted coastlines). We demonstrated our framework for two bycatch species in New Zealand deepwater fisheries: spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated data is necessary to map fish biomass at the scale of the New Zealand exclusive economic zone, and to interpolate local biomass indices (e.g., for the east coast of the South Island) in years with no survey but available observer data. Results also showed that, if enough survey data are available, fisheries analysts should: (1) develop both an integrated model and a model relying on survey-only data; and (2) for a given geographic area, ultimately choose the index produced with integrated data or the index produced with survey-only data based on the reliability of the interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal models are virtually insensitive to the consideration of physical barriers. |
doi_str_mv | 10.1093/icesjms/fsad129 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_icesjms_fsad129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icesjms/fsad129</oup_id><sourcerecordid>10.1093/icesjms/fsad129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-1a0900dc8c27e8e87ec6b0f78e3bb1a58faffcc80d03b7acb9bad63147f7e3233</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUws3pGCrHjtrZHVPFRqYIFFpbIH-eSKokjn1vUf0-qdme6u1f3vMNDyD1nj5xpUTYOcNthGdB4XukLMhnjeaErpS-P-3xWCC70NblB3DLG5GzBJsSt-gybZHLTbyju0h4O1PSeRoswHol6kw1tuiHFPSDNP0CHBL5xuYk90hjoO_zSbzDtkcJhLIpFhm6IybS0ix5avCVXwbQId-c5JV8vz5_Lt2L98bpaPq0LJ7jMBTdMM-adcpUEBUqCW1gWpAJhLTdzFUwIzinmmbDSOKut8QvBZzJIEJUQU1Keel2KiAlCPaSmM-lQc1YfHdVnR_XZ0Ug8nIi4G_59_gPXXW9r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Grüss, A ; Charsley, A R ; Thorson, J T ; Anderson, O F ; O'Driscoll, R L ; Wood, B ; Breivik, O N ; O’Leary, C A</creator><contributor>Subbey, Sam</contributor><creatorcontrib>Grüss, A ; Charsley, A R ; Thorson, J T ; Anderson, O F ; O'Driscoll, R L ; Wood, B ; Breivik, O N ; O’Leary, C A ; Subbey, Sam</creatorcontrib><description>Abstract
In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physical barriers (islands, convoluted coastlines). We demonstrated our framework for two bycatch species in New Zealand deepwater fisheries: spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated data is necessary to map fish biomass at the scale of the New Zealand exclusive economic zone, and to interpolate local biomass indices (e.g., for the east coast of the South Island) in years with no survey but available observer data. Results also showed that, if enough survey data are available, fisheries analysts should: (1) develop both an integrated model and a model relying on survey-only data; and (2) for a given geographic area, ultimately choose the index produced with integrated data or the index produced with survey-only data based on the reliability of the interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal models are virtually insensitive to the consideration of physical barriers.</description><identifier>ISSN: 1054-3139</identifier><identifier>EISSN: 1095-9289</identifier><identifier>DOI: 10.1093/icesjms/fsad129</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>ICES journal of marine science, 2023-09, Vol.80 (7), p.1991-2007</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of International Council for the Exploration of the Sea. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-1a0900dc8c27e8e87ec6b0f78e3bb1a58faffcc80d03b7acb9bad63147f7e3233</citedby><cites>FETCH-LOGICAL-c317t-1a0900dc8c27e8e87ec6b0f78e3bb1a58faffcc80d03b7acb9bad63147f7e3233</cites><orcidid>0000-0002-1737-9294 ; 0000-0002-9336-4297 ; 0000-0003-0124-6021 ; 0000-0001-7415-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1603,27923,27924</link.rule.ids></links><search><contributor>Subbey, Sam</contributor><creatorcontrib>Grüss, A</creatorcontrib><creatorcontrib>Charsley, A R</creatorcontrib><creatorcontrib>Thorson, J T</creatorcontrib><creatorcontrib>Anderson, O F</creatorcontrib><creatorcontrib>O'Driscoll, R L</creatorcontrib><creatorcontrib>Wood, B</creatorcontrib><creatorcontrib>Breivik, O N</creatorcontrib><creatorcontrib>O’Leary, C A</creatorcontrib><title>Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models</title><title>ICES journal of marine science</title><description>Abstract
In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physical barriers (islands, convoluted coastlines). We demonstrated our framework for two bycatch species in New Zealand deepwater fisheries: spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated data is necessary to map fish biomass at the scale of the New Zealand exclusive economic zone, and to interpolate local biomass indices (e.g., for the east coast of the South Island) in years with no survey but available observer data. Results also showed that, if enough survey data are available, fisheries analysts should: (1) develop both an integrated model and a model relying on survey-only data; and (2) for a given geographic area, ultimately choose the index produced with integrated data or the index produced with survey-only data based on the reliability of the interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal models are virtually insensitive to the consideration of physical barriers.</description><issn>1054-3139</issn><issn>1095-9289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkD1PwzAQhi0EEqUws3pGCrHjtrZHVPFRqYIFFpbIH-eSKokjn1vUf0-qdme6u1f3vMNDyD1nj5xpUTYOcNthGdB4XukLMhnjeaErpS-P-3xWCC70NblB3DLG5GzBJsSt-gybZHLTbyju0h4O1PSeRoswHol6kw1tuiHFPSDNP0CHBL5xuYk90hjoO_zSbzDtkcJhLIpFhm6IybS0ix5avCVXwbQId-c5JV8vz5_Lt2L98bpaPq0LJ7jMBTdMM-adcpUEBUqCW1gWpAJhLTdzFUwIzinmmbDSOKut8QvBZzJIEJUQU1Keel2KiAlCPaSmM-lQc1YfHdVnR_XZ0Ug8nIi4G_59_gPXXW9r</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Grüss, A</creator><creator>Charsley, A R</creator><creator>Thorson, J T</creator><creator>Anderson, O F</creator><creator>O'Driscoll, R L</creator><creator>Wood, B</creator><creator>Breivik, O N</creator><creator>O’Leary, C A</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1737-9294</orcidid><orcidid>https://orcid.org/0000-0002-9336-4297</orcidid><orcidid>https://orcid.org/0000-0003-0124-6021</orcidid><orcidid>https://orcid.org/0000-0001-7415-1010</orcidid></search><sort><creationdate>20230926</creationdate><title>Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models</title><author>Grüss, A ; Charsley, A R ; Thorson, J T ; Anderson, O F ; O'Driscoll, R L ; Wood, B ; Breivik, O N ; O’Leary, C A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-1a0900dc8c27e8e87ec6b0f78e3bb1a58faffcc80d03b7acb9bad63147f7e3233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüss, A</creatorcontrib><creatorcontrib>Charsley, A R</creatorcontrib><creatorcontrib>Thorson, J T</creatorcontrib><creatorcontrib>Anderson, O F</creatorcontrib><creatorcontrib>O'Driscoll, R L</creatorcontrib><creatorcontrib>Wood, B</creatorcontrib><creatorcontrib>Breivik, O N</creatorcontrib><creatorcontrib>O’Leary, C A</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>ICES journal of marine science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüss, A</au><au>Charsley, A R</au><au>Thorson, J T</au><au>Anderson, O F</au><au>O'Driscoll, R L</au><au>Wood, B</au><au>Breivik, O N</au><au>O’Leary, C A</au><au>Subbey, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models</atitle><jtitle>ICES journal of marine science</jtitle><date>2023-09-26</date><risdate>2023</risdate><volume>80</volume><issue>7</issue><spage>1991</spage><epage>2007</epage><pages>1991-2007</pages><issn>1054-3139</issn><eissn>1095-9289</eissn><abstract>Abstract
In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physical barriers (islands, convoluted coastlines). We demonstrated our framework for two bycatch species in New Zealand deepwater fisheries: spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated data is necessary to map fish biomass at the scale of the New Zealand exclusive economic zone, and to interpolate local biomass indices (e.g., for the east coast of the South Island) in years with no survey but available observer data. Results also showed that, if enough survey data are available, fisheries analysts should: (1) develop both an integrated model and a model relying on survey-only data; and (2) for a given geographic area, ultimately choose the index produced with integrated data or the index produced with survey-only data based on the reliability of the interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal models are virtually insensitive to the consideration of physical barriers.</abstract><pub>Oxford University Press</pub><doi>10.1093/icesjms/fsad129</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1737-9294</orcidid><orcidid>https://orcid.org/0000-0002-9336-4297</orcidid><orcidid>https://orcid.org/0000-0003-0124-6021</orcidid><orcidid>https://orcid.org/0000-0001-7415-1010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-3139 |
ispartof | ICES journal of marine science, 2023-09, Vol.80 (7), p.1991-2007 |
issn | 1054-3139 1095-9289 |
language | eng |
recordid | cdi_crossref_primary_10_1093_icesjms_fsad129 |
source | DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20survey%20and%20observer%20data%20improves%20the%20predictions%20of%20New%20Zealand%20spatio-temporal%20models&rft.jtitle=ICES%20journal%20of%20marine%20science&rft.au=Gr%C3%BCss,%20A&rft.date=2023-09-26&rft.volume=80&rft.issue=7&rft.spage=1991&rft.epage=2007&rft.pages=1991-2007&rft.issn=1054-3139&rft.eissn=1095-9289&rft_id=info:doi/10.1093/icesjms/fsad129&rft_dat=%3Coup_cross%3E10.1093/icesjms/fsad129%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/icesjms/fsad129&rfr_iscdi=true |