Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep

Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics, proteomics & bioinformatics proteomics & bioinformatics, 2024-07, Vol.22 (2)
Hauptverfasser: Li, Chao, Chen, Bingchun, Langda, Suo, Pu, Peng, Zhu, Xiaojia, Zhou, Shiwei, Kalds, Peter, Zhang, Ke, Bhati, Meenu, Leonard, Alexander, Huang, Shuhong, Li, Ran, Cuoji, Awang, Wang, Xiran, Zhu, Haolin, Wu, Yujiang, Cuomu, Renqin, Gui, Ba, Li, Ming, Wang, Yutao, Li, Yan, Fang, Wenwen, Jia, Ting, Pu, Tianchun, Pan, Xiangyu, Cai, Yudong, He, Chong, Wang, Liming, Jiang, Yu, Han, Jian-Lin, Chen, Yulin, Zhou, Ping, Pausch, Hubert, Wang, Xiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Genomics, proteomics & bioinformatics
container_volume 22
creator Li, Chao
Chen, Bingchun
Langda, Suo
Pu, Peng
Zhu, Xiaojia
Zhou, Shiwei
Kalds, Peter
Zhang, Ke
Bhati, Meenu
Leonard, Alexander
Huang, Shuhong
Li, Ran
Cuoji, Awang
Wang, Xiran
Zhu, Haolin
Wu, Yujiang
Cuomu, Renqin
Gui, Ba
Li, Ming
Wang, Yutao
Li, Yan
Fang, Wenwen
Jia, Ting
Pu, Tianchun
Pan, Xiangyu
Cai, Yudong
He, Chong
Wang, Liming
Jiang, Yu
Han, Jian-Lin
Chen, Yulin
Zhou, Ping
Pausch, Hubert
Wang, Xiaolong
description Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.
doi_str_mv 10.1093/gpbjnl/qzae030
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gpbjnl_qzae030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39142817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-eda34a6341fe216ed7efce98c14f87d24f672945849b0cd253804cdcfe97700d3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujEUS3Lk3_QOH2MY8uCVEwwbgQN24mpb2FIcPMOC0L_PUOAV3dxTnfSe5HyCOHMQctJ5t2vauryfePQZBwRYZCcGBSKHVNhjzNBAMh9IDchbADUIlS_JYMpOZK5Dwbkq-3QxVL1uxLS6e1qY4BA_3YoqPLcrONtKnpaot0jjXGvjJr6tg1FW08XfQ5Mz0cDw7p1Jk2mlj2_bI-DWB7T268qQI-XO6IfL48r2YLtnyfv86mS2aFgMjQGalMKhX3KHiKLkNvUeeWK59nTijff6FVkiu9ButEInNQ1lmPOssAnByR8XnXdk0IHfqi7cq96Y4Fh-IkqThLKi6SeuDpDLSH9R7df_3PivwFyL1lbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Chao ; Chen, Bingchun ; Langda, Suo ; Pu, Peng ; Zhu, Xiaojia ; Zhou, Shiwei ; Kalds, Peter ; Zhang, Ke ; Bhati, Meenu ; Leonard, Alexander ; Huang, Shuhong ; Li, Ran ; Cuoji, Awang ; Wang, Xiran ; Zhu, Haolin ; Wu, Yujiang ; Cuomu, Renqin ; Gui, Ba ; Li, Ming ; Wang, Yutao ; Li, Yan ; Fang, Wenwen ; Jia, Ting ; Pu, Tianchun ; Pan, Xiangyu ; Cai, Yudong ; He, Chong ; Wang, Liming ; Jiang, Yu ; Han, Jian-Lin ; Chen, Yulin ; Zhou, Ping ; Pausch, Hubert ; Wang, Xiaolong</creator><creatorcontrib>Li, Chao ; Chen, Bingchun ; Langda, Suo ; Pu, Peng ; Zhu, Xiaojia ; Zhou, Shiwei ; Kalds, Peter ; Zhang, Ke ; Bhati, Meenu ; Leonard, Alexander ; Huang, Shuhong ; Li, Ran ; Cuoji, Awang ; Wang, Xiran ; Zhu, Haolin ; Wu, Yujiang ; Cuomu, Renqin ; Gui, Ba ; Li, Ming ; Wang, Yutao ; Li, Yan ; Fang, Wenwen ; Jia, Ting ; Pu, Tianchun ; Pan, Xiangyu ; Cai, Yudong ; He, Chong ; Wang, Liming ; Jiang, Yu ; Han, Jian-Lin ; Chen, Yulin ; Zhou, Ping ; Pausch, Hubert ; Wang, Xiaolong</creatorcontrib><description>Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.</description><identifier>ISSN: 1672-0229</identifier><identifier>EISSN: 2210-3244</identifier><identifier>DOI: 10.1093/gpbjnl/qzae030</identifier><identifier>PMID: 39142817</identifier><language>eng</language><publisher>England</publisher><subject>Acclimatization - genetics ; Adaptation, Physiological - genetics ; Altitude ; Animals ; beta-Globins - genetics ; Haplotypes - genetics ; Multiomics ; Polymorphism, Single Nucleotide - genetics ; Proteomics - methods ; Sheep - genetics ; Tibet ; Transcriptome - genetics</subject><ispartof>Genomics, proteomics &amp; bioinformatics, 2024-07, Vol.22 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-eda34a6341fe216ed7efce98c14f87d24f672945849b0cd253804cdcfe97700d3</cites><orcidid>0009-0008-4973-6963 ; 0009-0005-8872-2650 ; 0000-0001-5977-6629 ; 0000-0002-0501-6760 ; 0000-0001-7049-8666 ; 0000-0001-6960-3836 ; 0000-0002-2392-1545 ; 0009-0008-7732-9257 ; 0000-0003-1620-1344 ; 0000-0002-1527-3963 ; 0000-0001-8425-5630 ; 0000-0002-8584-4100 ; 0000-0003-2016-2544 ; 0009-0008-0908-3056 ; 0000-0001-7088-3193 ; 0000-0001-5679-4055 ; 0000-0002-8127-4809 ; 0000-0003-1446-7253 ; 0009-0000-2485-6792 ; 0000-0001-5330-1278 ; 0009-0000-6210-9026 ; 0000-0002-3915-4889 ; 0009-0002-2848-7511 ; 0009-0007-3442-1232 ; 0000-0001-6841-7652 ; 0000-0003-2302-4200 ; 0000-0002-4276-483X ; 0000-0003-4955-2255 ; 0000-0002-2769-7616 ; 0009-0008-9458-5906 ; 0000-0003-4821-3585 ; 0000-0001-5902-0901 ; 0000-0002-1785-7778 ; 0009-0000-6736-1327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39142817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Chen, Bingchun</creatorcontrib><creatorcontrib>Langda, Suo</creatorcontrib><creatorcontrib>Pu, Peng</creatorcontrib><creatorcontrib>Zhu, Xiaojia</creatorcontrib><creatorcontrib>Zhou, Shiwei</creatorcontrib><creatorcontrib>Kalds, Peter</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bhati, Meenu</creatorcontrib><creatorcontrib>Leonard, Alexander</creatorcontrib><creatorcontrib>Huang, Shuhong</creatorcontrib><creatorcontrib>Li, Ran</creatorcontrib><creatorcontrib>Cuoji, Awang</creatorcontrib><creatorcontrib>Wang, Xiran</creatorcontrib><creatorcontrib>Zhu, Haolin</creatorcontrib><creatorcontrib>Wu, Yujiang</creatorcontrib><creatorcontrib>Cuomu, Renqin</creatorcontrib><creatorcontrib>Gui, Ba</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Yutao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Fang, Wenwen</creatorcontrib><creatorcontrib>Jia, Ting</creatorcontrib><creatorcontrib>Pu, Tianchun</creatorcontrib><creatorcontrib>Pan, Xiangyu</creatorcontrib><creatorcontrib>Cai, Yudong</creatorcontrib><creatorcontrib>He, Chong</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Han, Jian-Lin</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Pausch, Hubert</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><title>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</title><title>Genomics, proteomics &amp; bioinformatics</title><addtitle>Genomics Proteomics Bioinformatics</addtitle><description>Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.</description><subject>Acclimatization - genetics</subject><subject>Adaptation, Physiological - genetics</subject><subject>Altitude</subject><subject>Animals</subject><subject>beta-Globins - genetics</subject><subject>Haplotypes - genetics</subject><subject>Multiomics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Proteomics - methods</subject><subject>Sheep - genetics</subject><subject>Tibet</subject><subject>Transcriptome - genetics</subject><issn>1672-0229</issn><issn>2210-3244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPAjEUhRujEUS3Lk3_QOH2MY8uCVEwwbgQN24mpb2FIcPMOC0L_PUOAV3dxTnfSe5HyCOHMQctJ5t2vauryfePQZBwRYZCcGBSKHVNhjzNBAMh9IDchbADUIlS_JYMpOZK5Dwbkq-3QxVL1uxLS6e1qY4BA_3YoqPLcrONtKnpaot0jjXGvjJr6tg1FW08XfQ5Mz0cDw7p1Jk2mlj2_bI-DWB7T268qQI-XO6IfL48r2YLtnyfv86mS2aFgMjQGalMKhX3KHiKLkNvUeeWK59nTijff6FVkiu9ButEInNQ1lmPOssAnByR8XnXdk0IHfqi7cq96Y4Fh-IkqThLKi6SeuDpDLSH9R7df_3PivwFyL1lbw</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Li, Chao</creator><creator>Chen, Bingchun</creator><creator>Langda, Suo</creator><creator>Pu, Peng</creator><creator>Zhu, Xiaojia</creator><creator>Zhou, Shiwei</creator><creator>Kalds, Peter</creator><creator>Zhang, Ke</creator><creator>Bhati, Meenu</creator><creator>Leonard, Alexander</creator><creator>Huang, Shuhong</creator><creator>Li, Ran</creator><creator>Cuoji, Awang</creator><creator>Wang, Xiran</creator><creator>Zhu, Haolin</creator><creator>Wu, Yujiang</creator><creator>Cuomu, Renqin</creator><creator>Gui, Ba</creator><creator>Li, Ming</creator><creator>Wang, Yutao</creator><creator>Li, Yan</creator><creator>Fang, Wenwen</creator><creator>Jia, Ting</creator><creator>Pu, Tianchun</creator><creator>Pan, Xiangyu</creator><creator>Cai, Yudong</creator><creator>He, Chong</creator><creator>Wang, Liming</creator><creator>Jiang, Yu</creator><creator>Han, Jian-Lin</creator><creator>Chen, Yulin</creator><creator>Zhou, Ping</creator><creator>Pausch, Hubert</creator><creator>Wang, Xiaolong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-4973-6963</orcidid><orcidid>https://orcid.org/0009-0005-8872-2650</orcidid><orcidid>https://orcid.org/0000-0001-5977-6629</orcidid><orcidid>https://orcid.org/0000-0002-0501-6760</orcidid><orcidid>https://orcid.org/0000-0001-7049-8666</orcidid><orcidid>https://orcid.org/0000-0001-6960-3836</orcidid><orcidid>https://orcid.org/0000-0002-2392-1545</orcidid><orcidid>https://orcid.org/0009-0008-7732-9257</orcidid><orcidid>https://orcid.org/0000-0003-1620-1344</orcidid><orcidid>https://orcid.org/0000-0002-1527-3963</orcidid><orcidid>https://orcid.org/0000-0001-8425-5630</orcidid><orcidid>https://orcid.org/0000-0002-8584-4100</orcidid><orcidid>https://orcid.org/0000-0003-2016-2544</orcidid><orcidid>https://orcid.org/0009-0008-0908-3056</orcidid><orcidid>https://orcid.org/0000-0001-7088-3193</orcidid><orcidid>https://orcid.org/0000-0001-5679-4055</orcidid><orcidid>https://orcid.org/0000-0002-8127-4809</orcidid><orcidid>https://orcid.org/0000-0003-1446-7253</orcidid><orcidid>https://orcid.org/0009-0000-2485-6792</orcidid><orcidid>https://orcid.org/0000-0001-5330-1278</orcidid><orcidid>https://orcid.org/0009-0000-6210-9026</orcidid><orcidid>https://orcid.org/0000-0002-3915-4889</orcidid><orcidid>https://orcid.org/0009-0002-2848-7511</orcidid><orcidid>https://orcid.org/0009-0007-3442-1232</orcidid><orcidid>https://orcid.org/0000-0001-6841-7652</orcidid><orcidid>https://orcid.org/0000-0003-2302-4200</orcidid><orcidid>https://orcid.org/0000-0002-4276-483X</orcidid><orcidid>https://orcid.org/0000-0003-4955-2255</orcidid><orcidid>https://orcid.org/0000-0002-2769-7616</orcidid><orcidid>https://orcid.org/0009-0008-9458-5906</orcidid><orcidid>https://orcid.org/0000-0003-4821-3585</orcidid><orcidid>https://orcid.org/0000-0001-5902-0901</orcidid><orcidid>https://orcid.org/0000-0002-1785-7778</orcidid><orcidid>https://orcid.org/0009-0000-6736-1327</orcidid></search><sort><creationdate>20240703</creationdate><title>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</title><author>Li, Chao ; Chen, Bingchun ; Langda, Suo ; Pu, Peng ; Zhu, Xiaojia ; Zhou, Shiwei ; Kalds, Peter ; Zhang, Ke ; Bhati, Meenu ; Leonard, Alexander ; Huang, Shuhong ; Li, Ran ; Cuoji, Awang ; Wang, Xiran ; Zhu, Haolin ; Wu, Yujiang ; Cuomu, Renqin ; Gui, Ba ; Li, Ming ; Wang, Yutao ; Li, Yan ; Fang, Wenwen ; Jia, Ting ; Pu, Tianchun ; Pan, Xiangyu ; Cai, Yudong ; He, Chong ; Wang, Liming ; Jiang, Yu ; Han, Jian-Lin ; Chen, Yulin ; Zhou, Ping ; Pausch, Hubert ; Wang, Xiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-eda34a6341fe216ed7efce98c14f87d24f672945849b0cd253804cdcfe97700d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acclimatization - genetics</topic><topic>Adaptation, Physiological - genetics</topic><topic>Altitude</topic><topic>Animals</topic><topic>beta-Globins - genetics</topic><topic>Haplotypes - genetics</topic><topic>Multiomics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Proteomics - methods</topic><topic>Sheep - genetics</topic><topic>Tibet</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Chen, Bingchun</creatorcontrib><creatorcontrib>Langda, Suo</creatorcontrib><creatorcontrib>Pu, Peng</creatorcontrib><creatorcontrib>Zhu, Xiaojia</creatorcontrib><creatorcontrib>Zhou, Shiwei</creatorcontrib><creatorcontrib>Kalds, Peter</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bhati, Meenu</creatorcontrib><creatorcontrib>Leonard, Alexander</creatorcontrib><creatorcontrib>Huang, Shuhong</creatorcontrib><creatorcontrib>Li, Ran</creatorcontrib><creatorcontrib>Cuoji, Awang</creatorcontrib><creatorcontrib>Wang, Xiran</creatorcontrib><creatorcontrib>Zhu, Haolin</creatorcontrib><creatorcontrib>Wu, Yujiang</creatorcontrib><creatorcontrib>Cuomu, Renqin</creatorcontrib><creatorcontrib>Gui, Ba</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Yutao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Fang, Wenwen</creatorcontrib><creatorcontrib>Jia, Ting</creatorcontrib><creatorcontrib>Pu, Tianchun</creatorcontrib><creatorcontrib>Pan, Xiangyu</creatorcontrib><creatorcontrib>Cai, Yudong</creatorcontrib><creatorcontrib>He, Chong</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Han, Jian-Lin</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Pausch, Hubert</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Genomics, proteomics &amp; bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Chen, Bingchun</au><au>Langda, Suo</au><au>Pu, Peng</au><au>Zhu, Xiaojia</au><au>Zhou, Shiwei</au><au>Kalds, Peter</au><au>Zhang, Ke</au><au>Bhati, Meenu</au><au>Leonard, Alexander</au><au>Huang, Shuhong</au><au>Li, Ran</au><au>Cuoji, Awang</au><au>Wang, Xiran</au><au>Zhu, Haolin</au><au>Wu, Yujiang</au><au>Cuomu, Renqin</au><au>Gui, Ba</au><au>Li, Ming</au><au>Wang, Yutao</au><au>Li, Yan</au><au>Fang, Wenwen</au><au>Jia, Ting</au><au>Pu, Tianchun</au><au>Pan, Xiangyu</au><au>Cai, Yudong</au><au>He, Chong</au><au>Wang, Liming</au><au>Jiang, Yu</au><au>Han, Jian-Lin</au><au>Chen, Yulin</au><au>Zhou, Ping</au><au>Pausch, Hubert</au><au>Wang, Xiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</atitle><jtitle>Genomics, proteomics &amp; bioinformatics</jtitle><addtitle>Genomics Proteomics Bioinformatics</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>22</volume><issue>2</issue><issn>1672-0229</issn><eissn>2210-3244</eissn><abstract>Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.</abstract><cop>England</cop><pmid>39142817</pmid><doi>10.1093/gpbjnl/qzae030</doi><orcidid>https://orcid.org/0009-0008-4973-6963</orcidid><orcidid>https://orcid.org/0009-0005-8872-2650</orcidid><orcidid>https://orcid.org/0000-0001-5977-6629</orcidid><orcidid>https://orcid.org/0000-0002-0501-6760</orcidid><orcidid>https://orcid.org/0000-0001-7049-8666</orcidid><orcidid>https://orcid.org/0000-0001-6960-3836</orcidid><orcidid>https://orcid.org/0000-0002-2392-1545</orcidid><orcidid>https://orcid.org/0009-0008-7732-9257</orcidid><orcidid>https://orcid.org/0000-0003-1620-1344</orcidid><orcidid>https://orcid.org/0000-0002-1527-3963</orcidid><orcidid>https://orcid.org/0000-0001-8425-5630</orcidid><orcidid>https://orcid.org/0000-0002-8584-4100</orcidid><orcidid>https://orcid.org/0000-0003-2016-2544</orcidid><orcidid>https://orcid.org/0009-0008-0908-3056</orcidid><orcidid>https://orcid.org/0000-0001-7088-3193</orcidid><orcidid>https://orcid.org/0000-0001-5679-4055</orcidid><orcidid>https://orcid.org/0000-0002-8127-4809</orcidid><orcidid>https://orcid.org/0000-0003-1446-7253</orcidid><orcidid>https://orcid.org/0009-0000-2485-6792</orcidid><orcidid>https://orcid.org/0000-0001-5330-1278</orcidid><orcidid>https://orcid.org/0009-0000-6210-9026</orcidid><orcidid>https://orcid.org/0000-0002-3915-4889</orcidid><orcidid>https://orcid.org/0009-0002-2848-7511</orcidid><orcidid>https://orcid.org/0009-0007-3442-1232</orcidid><orcidid>https://orcid.org/0000-0001-6841-7652</orcidid><orcidid>https://orcid.org/0000-0003-2302-4200</orcidid><orcidid>https://orcid.org/0000-0002-4276-483X</orcidid><orcidid>https://orcid.org/0000-0003-4955-2255</orcidid><orcidid>https://orcid.org/0000-0002-2769-7616</orcidid><orcidid>https://orcid.org/0009-0008-9458-5906</orcidid><orcidid>https://orcid.org/0000-0003-4821-3585</orcidid><orcidid>https://orcid.org/0000-0001-5902-0901</orcidid><orcidid>https://orcid.org/0000-0002-1785-7778</orcidid><orcidid>https://orcid.org/0009-0000-6736-1327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-0229
ispartof Genomics, proteomics & bioinformatics, 2024-07, Vol.22 (2)
issn 1672-0229
2210-3244
language eng
recordid cdi_crossref_primary_10_1093_gpbjnl_qzae030
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acclimatization - genetics
Adaptation, Physiological - genetics
Altitude
Animals
beta-Globins - genetics
Haplotypes - genetics
Multiomics
Polymorphism, Single Nucleotide - genetics
Proteomics - methods
Sheep - genetics
Tibet
Transcriptome - genetics
title Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omic%20Analyses%20Shed%20Light%20on%20The%20Genetic%20Control%20of%20High-altitude%20Adaptation%20in%20Sheep&rft.jtitle=Genomics,%20proteomics%20&%20bioinformatics&rft.au=Li,%20Chao&rft.date=2024-07-03&rft.volume=22&rft.issue=2&rft.issn=1672-0229&rft.eissn=2210-3244&rft_id=info:doi/10.1093/gpbjnl/qzae030&rft_dat=%3Cpubmed_cross%3E39142817%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39142817&rfr_iscdi=true