Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep
Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitu...
Gespeichert in:
Veröffentlicht in: | Genomics, proteomics & bioinformatics proteomics & bioinformatics, 2024-07, Vol.22 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Genomics, proteomics & bioinformatics |
container_volume | 22 |
creator | Li, Chao Chen, Bingchun Langda, Suo Pu, Peng Zhu, Xiaojia Zhou, Shiwei Kalds, Peter Zhang, Ke Bhati, Meenu Leonard, Alexander Huang, Shuhong Li, Ran Cuoji, Awang Wang, Xiran Zhu, Haolin Wu, Yujiang Cuomu, Renqin Gui, Ba Li, Ming Wang, Yutao Li, Yan Fang, Wenwen Jia, Ting Pu, Tianchun Pan, Xiangyu Cai, Yudong He, Chong Wang, Liming Jiang, Yu Han, Jian-Lin Chen, Yulin Zhou, Ping Pausch, Hubert Wang, Xiaolong |
description | Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep. |
doi_str_mv | 10.1093/gpbjnl/qzae030 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gpbjnl_qzae030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39142817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-eda34a6341fe216ed7efce98c14f87d24f672945849b0cd253804cdcfe97700d3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujEUS3Lk3_QOH2MY8uCVEwwbgQN24mpb2FIcPMOC0L_PUOAV3dxTnfSe5HyCOHMQctJ5t2vauryfePQZBwRYZCcGBSKHVNhjzNBAMh9IDchbADUIlS_JYMpOZK5Dwbkq-3QxVL1uxLS6e1qY4BA_3YoqPLcrONtKnpaot0jjXGvjJr6tg1FW08XfQ5Mz0cDw7p1Jk2mlj2_bI-DWB7T268qQI-XO6IfL48r2YLtnyfv86mS2aFgMjQGalMKhX3KHiKLkNvUeeWK59nTijff6FVkiu9ButEInNQ1lmPOssAnByR8XnXdk0IHfqi7cq96Y4Fh-IkqThLKi6SeuDpDLSH9R7df_3PivwFyL1lbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Chao ; Chen, Bingchun ; Langda, Suo ; Pu, Peng ; Zhu, Xiaojia ; Zhou, Shiwei ; Kalds, Peter ; Zhang, Ke ; Bhati, Meenu ; Leonard, Alexander ; Huang, Shuhong ; Li, Ran ; Cuoji, Awang ; Wang, Xiran ; Zhu, Haolin ; Wu, Yujiang ; Cuomu, Renqin ; Gui, Ba ; Li, Ming ; Wang, Yutao ; Li, Yan ; Fang, Wenwen ; Jia, Ting ; Pu, Tianchun ; Pan, Xiangyu ; Cai, Yudong ; He, Chong ; Wang, Liming ; Jiang, Yu ; Han, Jian-Lin ; Chen, Yulin ; Zhou, Ping ; Pausch, Hubert ; Wang, Xiaolong</creator><creatorcontrib>Li, Chao ; Chen, Bingchun ; Langda, Suo ; Pu, Peng ; Zhu, Xiaojia ; Zhou, Shiwei ; Kalds, Peter ; Zhang, Ke ; Bhati, Meenu ; Leonard, Alexander ; Huang, Shuhong ; Li, Ran ; Cuoji, Awang ; Wang, Xiran ; Zhu, Haolin ; Wu, Yujiang ; Cuomu, Renqin ; Gui, Ba ; Li, Ming ; Wang, Yutao ; Li, Yan ; Fang, Wenwen ; Jia, Ting ; Pu, Tianchun ; Pan, Xiangyu ; Cai, Yudong ; He, Chong ; Wang, Liming ; Jiang, Yu ; Han, Jian-Lin ; Chen, Yulin ; Zhou, Ping ; Pausch, Hubert ; Wang, Xiaolong</creatorcontrib><description>Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.</description><identifier>ISSN: 1672-0229</identifier><identifier>EISSN: 2210-3244</identifier><identifier>DOI: 10.1093/gpbjnl/qzae030</identifier><identifier>PMID: 39142817</identifier><language>eng</language><publisher>England</publisher><subject>Acclimatization - genetics ; Adaptation, Physiological - genetics ; Altitude ; Animals ; beta-Globins - genetics ; Haplotypes - genetics ; Multiomics ; Polymorphism, Single Nucleotide - genetics ; Proteomics - methods ; Sheep - genetics ; Tibet ; Transcriptome - genetics</subject><ispartof>Genomics, proteomics & bioinformatics, 2024-07, Vol.22 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-eda34a6341fe216ed7efce98c14f87d24f672945849b0cd253804cdcfe97700d3</cites><orcidid>0009-0008-4973-6963 ; 0009-0005-8872-2650 ; 0000-0001-5977-6629 ; 0000-0002-0501-6760 ; 0000-0001-7049-8666 ; 0000-0001-6960-3836 ; 0000-0002-2392-1545 ; 0009-0008-7732-9257 ; 0000-0003-1620-1344 ; 0000-0002-1527-3963 ; 0000-0001-8425-5630 ; 0000-0002-8584-4100 ; 0000-0003-2016-2544 ; 0009-0008-0908-3056 ; 0000-0001-7088-3193 ; 0000-0001-5679-4055 ; 0000-0002-8127-4809 ; 0000-0003-1446-7253 ; 0009-0000-2485-6792 ; 0000-0001-5330-1278 ; 0009-0000-6210-9026 ; 0000-0002-3915-4889 ; 0009-0002-2848-7511 ; 0009-0007-3442-1232 ; 0000-0001-6841-7652 ; 0000-0003-2302-4200 ; 0000-0002-4276-483X ; 0000-0003-4955-2255 ; 0000-0002-2769-7616 ; 0009-0008-9458-5906 ; 0000-0003-4821-3585 ; 0000-0001-5902-0901 ; 0000-0002-1785-7778 ; 0009-0000-6736-1327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39142817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Chen, Bingchun</creatorcontrib><creatorcontrib>Langda, Suo</creatorcontrib><creatorcontrib>Pu, Peng</creatorcontrib><creatorcontrib>Zhu, Xiaojia</creatorcontrib><creatorcontrib>Zhou, Shiwei</creatorcontrib><creatorcontrib>Kalds, Peter</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bhati, Meenu</creatorcontrib><creatorcontrib>Leonard, Alexander</creatorcontrib><creatorcontrib>Huang, Shuhong</creatorcontrib><creatorcontrib>Li, Ran</creatorcontrib><creatorcontrib>Cuoji, Awang</creatorcontrib><creatorcontrib>Wang, Xiran</creatorcontrib><creatorcontrib>Zhu, Haolin</creatorcontrib><creatorcontrib>Wu, Yujiang</creatorcontrib><creatorcontrib>Cuomu, Renqin</creatorcontrib><creatorcontrib>Gui, Ba</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Yutao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Fang, Wenwen</creatorcontrib><creatorcontrib>Jia, Ting</creatorcontrib><creatorcontrib>Pu, Tianchun</creatorcontrib><creatorcontrib>Pan, Xiangyu</creatorcontrib><creatorcontrib>Cai, Yudong</creatorcontrib><creatorcontrib>He, Chong</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Han, Jian-Lin</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Pausch, Hubert</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><title>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</title><title>Genomics, proteomics & bioinformatics</title><addtitle>Genomics Proteomics Bioinformatics</addtitle><description>Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.</description><subject>Acclimatization - genetics</subject><subject>Adaptation, Physiological - genetics</subject><subject>Altitude</subject><subject>Animals</subject><subject>beta-Globins - genetics</subject><subject>Haplotypes - genetics</subject><subject>Multiomics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Proteomics - methods</subject><subject>Sheep - genetics</subject><subject>Tibet</subject><subject>Transcriptome - genetics</subject><issn>1672-0229</issn><issn>2210-3244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPAjEUhRujEUS3Lk3_QOH2MY8uCVEwwbgQN24mpb2FIcPMOC0L_PUOAV3dxTnfSe5HyCOHMQctJ5t2vauryfePQZBwRYZCcGBSKHVNhjzNBAMh9IDchbADUIlS_JYMpOZK5Dwbkq-3QxVL1uxLS6e1qY4BA_3YoqPLcrONtKnpaot0jjXGvjJr6tg1FW08XfQ5Mz0cDw7p1Jk2mlj2_bI-DWB7T268qQI-XO6IfL48r2YLtnyfv86mS2aFgMjQGalMKhX3KHiKLkNvUeeWK59nTijff6FVkiu9ButEInNQ1lmPOssAnByR8XnXdk0IHfqi7cq96Y4Fh-IkqThLKi6SeuDpDLSH9R7df_3PivwFyL1lbw</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Li, Chao</creator><creator>Chen, Bingchun</creator><creator>Langda, Suo</creator><creator>Pu, Peng</creator><creator>Zhu, Xiaojia</creator><creator>Zhou, Shiwei</creator><creator>Kalds, Peter</creator><creator>Zhang, Ke</creator><creator>Bhati, Meenu</creator><creator>Leonard, Alexander</creator><creator>Huang, Shuhong</creator><creator>Li, Ran</creator><creator>Cuoji, Awang</creator><creator>Wang, Xiran</creator><creator>Zhu, Haolin</creator><creator>Wu, Yujiang</creator><creator>Cuomu, Renqin</creator><creator>Gui, Ba</creator><creator>Li, Ming</creator><creator>Wang, Yutao</creator><creator>Li, Yan</creator><creator>Fang, Wenwen</creator><creator>Jia, Ting</creator><creator>Pu, Tianchun</creator><creator>Pan, Xiangyu</creator><creator>Cai, Yudong</creator><creator>He, Chong</creator><creator>Wang, Liming</creator><creator>Jiang, Yu</creator><creator>Han, Jian-Lin</creator><creator>Chen, Yulin</creator><creator>Zhou, Ping</creator><creator>Pausch, Hubert</creator><creator>Wang, Xiaolong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-4973-6963</orcidid><orcidid>https://orcid.org/0009-0005-8872-2650</orcidid><orcidid>https://orcid.org/0000-0001-5977-6629</orcidid><orcidid>https://orcid.org/0000-0002-0501-6760</orcidid><orcidid>https://orcid.org/0000-0001-7049-8666</orcidid><orcidid>https://orcid.org/0000-0001-6960-3836</orcidid><orcidid>https://orcid.org/0000-0002-2392-1545</orcidid><orcidid>https://orcid.org/0009-0008-7732-9257</orcidid><orcidid>https://orcid.org/0000-0003-1620-1344</orcidid><orcidid>https://orcid.org/0000-0002-1527-3963</orcidid><orcidid>https://orcid.org/0000-0001-8425-5630</orcidid><orcidid>https://orcid.org/0000-0002-8584-4100</orcidid><orcidid>https://orcid.org/0000-0003-2016-2544</orcidid><orcidid>https://orcid.org/0009-0008-0908-3056</orcidid><orcidid>https://orcid.org/0000-0001-7088-3193</orcidid><orcidid>https://orcid.org/0000-0001-5679-4055</orcidid><orcidid>https://orcid.org/0000-0002-8127-4809</orcidid><orcidid>https://orcid.org/0000-0003-1446-7253</orcidid><orcidid>https://orcid.org/0009-0000-2485-6792</orcidid><orcidid>https://orcid.org/0000-0001-5330-1278</orcidid><orcidid>https://orcid.org/0009-0000-6210-9026</orcidid><orcidid>https://orcid.org/0000-0002-3915-4889</orcidid><orcidid>https://orcid.org/0009-0002-2848-7511</orcidid><orcidid>https://orcid.org/0009-0007-3442-1232</orcidid><orcidid>https://orcid.org/0000-0001-6841-7652</orcidid><orcidid>https://orcid.org/0000-0003-2302-4200</orcidid><orcidid>https://orcid.org/0000-0002-4276-483X</orcidid><orcidid>https://orcid.org/0000-0003-4955-2255</orcidid><orcidid>https://orcid.org/0000-0002-2769-7616</orcidid><orcidid>https://orcid.org/0009-0008-9458-5906</orcidid><orcidid>https://orcid.org/0000-0003-4821-3585</orcidid><orcidid>https://orcid.org/0000-0001-5902-0901</orcidid><orcidid>https://orcid.org/0000-0002-1785-7778</orcidid><orcidid>https://orcid.org/0009-0000-6736-1327</orcidid></search><sort><creationdate>20240703</creationdate><title>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</title><author>Li, Chao ; Chen, Bingchun ; Langda, Suo ; Pu, Peng ; Zhu, Xiaojia ; Zhou, Shiwei ; Kalds, Peter ; Zhang, Ke ; Bhati, Meenu ; Leonard, Alexander ; Huang, Shuhong ; Li, Ran ; Cuoji, Awang ; Wang, Xiran ; Zhu, Haolin ; Wu, Yujiang ; Cuomu, Renqin ; Gui, Ba ; Li, Ming ; Wang, Yutao ; Li, Yan ; Fang, Wenwen ; Jia, Ting ; Pu, Tianchun ; Pan, Xiangyu ; Cai, Yudong ; He, Chong ; Wang, Liming ; Jiang, Yu ; Han, Jian-Lin ; Chen, Yulin ; Zhou, Ping ; Pausch, Hubert ; Wang, Xiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-eda34a6341fe216ed7efce98c14f87d24f672945849b0cd253804cdcfe97700d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acclimatization - genetics</topic><topic>Adaptation, Physiological - genetics</topic><topic>Altitude</topic><topic>Animals</topic><topic>beta-Globins - genetics</topic><topic>Haplotypes - genetics</topic><topic>Multiomics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Proteomics - methods</topic><topic>Sheep - genetics</topic><topic>Tibet</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Chen, Bingchun</creatorcontrib><creatorcontrib>Langda, Suo</creatorcontrib><creatorcontrib>Pu, Peng</creatorcontrib><creatorcontrib>Zhu, Xiaojia</creatorcontrib><creatorcontrib>Zhou, Shiwei</creatorcontrib><creatorcontrib>Kalds, Peter</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Bhati, Meenu</creatorcontrib><creatorcontrib>Leonard, Alexander</creatorcontrib><creatorcontrib>Huang, Shuhong</creatorcontrib><creatorcontrib>Li, Ran</creatorcontrib><creatorcontrib>Cuoji, Awang</creatorcontrib><creatorcontrib>Wang, Xiran</creatorcontrib><creatorcontrib>Zhu, Haolin</creatorcontrib><creatorcontrib>Wu, Yujiang</creatorcontrib><creatorcontrib>Cuomu, Renqin</creatorcontrib><creatorcontrib>Gui, Ba</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Yutao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Fang, Wenwen</creatorcontrib><creatorcontrib>Jia, Ting</creatorcontrib><creatorcontrib>Pu, Tianchun</creatorcontrib><creatorcontrib>Pan, Xiangyu</creatorcontrib><creatorcontrib>Cai, Yudong</creatorcontrib><creatorcontrib>He, Chong</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Han, Jian-Lin</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Pausch, Hubert</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Genomics, proteomics & bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Chen, Bingchun</au><au>Langda, Suo</au><au>Pu, Peng</au><au>Zhu, Xiaojia</au><au>Zhou, Shiwei</au><au>Kalds, Peter</au><au>Zhang, Ke</au><au>Bhati, Meenu</au><au>Leonard, Alexander</au><au>Huang, Shuhong</au><au>Li, Ran</au><au>Cuoji, Awang</au><au>Wang, Xiran</au><au>Zhu, Haolin</au><au>Wu, Yujiang</au><au>Cuomu, Renqin</au><au>Gui, Ba</au><au>Li, Ming</au><au>Wang, Yutao</au><au>Li, Yan</au><au>Fang, Wenwen</au><au>Jia, Ting</au><au>Pu, Tianchun</au><au>Pan, Xiangyu</au><au>Cai, Yudong</au><au>He, Chong</au><au>Wang, Liming</au><au>Jiang, Yu</au><au>Han, Jian-Lin</au><au>Chen, Yulin</au><au>Zhou, Ping</au><au>Pausch, Hubert</au><au>Wang, Xiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep</atitle><jtitle>Genomics, proteomics & bioinformatics</jtitle><addtitle>Genomics Proteomics Bioinformatics</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>22</volume><issue>2</issue><issn>1672-0229</issn><eissn>2210-3244</eissn><abstract>Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.</abstract><cop>England</cop><pmid>39142817</pmid><doi>10.1093/gpbjnl/qzae030</doi><orcidid>https://orcid.org/0009-0008-4973-6963</orcidid><orcidid>https://orcid.org/0009-0005-8872-2650</orcidid><orcidid>https://orcid.org/0000-0001-5977-6629</orcidid><orcidid>https://orcid.org/0000-0002-0501-6760</orcidid><orcidid>https://orcid.org/0000-0001-7049-8666</orcidid><orcidid>https://orcid.org/0000-0001-6960-3836</orcidid><orcidid>https://orcid.org/0000-0002-2392-1545</orcidid><orcidid>https://orcid.org/0009-0008-7732-9257</orcidid><orcidid>https://orcid.org/0000-0003-1620-1344</orcidid><orcidid>https://orcid.org/0000-0002-1527-3963</orcidid><orcidid>https://orcid.org/0000-0001-8425-5630</orcidid><orcidid>https://orcid.org/0000-0002-8584-4100</orcidid><orcidid>https://orcid.org/0000-0003-2016-2544</orcidid><orcidid>https://orcid.org/0009-0008-0908-3056</orcidid><orcidid>https://orcid.org/0000-0001-7088-3193</orcidid><orcidid>https://orcid.org/0000-0001-5679-4055</orcidid><orcidid>https://orcid.org/0000-0002-8127-4809</orcidid><orcidid>https://orcid.org/0000-0003-1446-7253</orcidid><orcidid>https://orcid.org/0009-0000-2485-6792</orcidid><orcidid>https://orcid.org/0000-0001-5330-1278</orcidid><orcidid>https://orcid.org/0009-0000-6210-9026</orcidid><orcidid>https://orcid.org/0000-0002-3915-4889</orcidid><orcidid>https://orcid.org/0009-0002-2848-7511</orcidid><orcidid>https://orcid.org/0009-0007-3442-1232</orcidid><orcidid>https://orcid.org/0000-0001-6841-7652</orcidid><orcidid>https://orcid.org/0000-0003-2302-4200</orcidid><orcidid>https://orcid.org/0000-0002-4276-483X</orcidid><orcidid>https://orcid.org/0000-0003-4955-2255</orcidid><orcidid>https://orcid.org/0000-0002-2769-7616</orcidid><orcidid>https://orcid.org/0009-0008-9458-5906</orcidid><orcidid>https://orcid.org/0000-0003-4821-3585</orcidid><orcidid>https://orcid.org/0000-0001-5902-0901</orcidid><orcidid>https://orcid.org/0000-0002-1785-7778</orcidid><orcidid>https://orcid.org/0009-0000-6736-1327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-0229 |
ispartof | Genomics, proteomics & bioinformatics, 2024-07, Vol.22 (2) |
issn | 1672-0229 2210-3244 |
language | eng |
recordid | cdi_crossref_primary_10_1093_gpbjnl_qzae030 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acclimatization - genetics Adaptation, Physiological - genetics Altitude Animals beta-Globins - genetics Haplotypes - genetics Multiomics Polymorphism, Single Nucleotide - genetics Proteomics - methods Sheep - genetics Tibet Transcriptome - genetics |
title | Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omic%20Analyses%20Shed%20Light%20on%20The%20Genetic%20Control%20of%20High-altitude%20Adaptation%20in%20Sheep&rft.jtitle=Genomics,%20proteomics%20&%20bioinformatics&rft.au=Li,%20Chao&rft.date=2024-07-03&rft.volume=22&rft.issue=2&rft.issn=1672-0229&rft.eissn=2210-3244&rft_id=info:doi/10.1093/gpbjnl/qzae030&rft_dat=%3Cpubmed_cross%3E39142817%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39142817&rfr_iscdi=true |