Differences between heterogenous and homogenous slip in regional tsunami hazards modelling

Summary The homogenous slip finite fault model is commonly used in tsunami hazards for a variety of applications. These include early warning and short-term forecasts of tsunami amplitudes, scenario ruptures for risk assessments, and probabilistic tsunami hazard analysis (PTHA). Over the last decade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2019-10, Vol.219 (1), p.553-562
Hauptverfasser: Melgar, Diego, Williamson, Amy L, Salazar-Monroy, E Fernando
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The homogenous slip finite fault model is commonly used in tsunami hazards for a variety of applications. These include early warning and short-term forecasts of tsunami amplitudes, scenario ruptures for risk assessments, and probabilistic tsunami hazard analysis (PTHA). Over the last decade, however, it has become feasible to calculate stochastic slip models which reflect the expected spatial statistics of slip observed in real events. In this paper we examine the impacts of the homogenous slip model when compared to stochastic slip distributions and ask whether, in light of these technical advancements, the homogenous slip assumption remains a reasonable one. We employ a simplified subduction zone geometry, free of complex path and site effects, and study simulated tsunamis from earthquakes in the magnitude 7 to magnitude 9 range. We find that homogenous slip models have lower tsunami potential energies and frequently underpredict the peak tsunami amplitudes and the resulting tsunami hazard, particularly at low probabilities of exceedance. This finding has important implications for all tsunami hazards applications. Calculating a suite of realistic stochastic slip distributions is now within reach of tsunami scientists, thus, we conclude that use of heterogeneous slip models for tsunami hazards applications is preferable
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggz299