Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)

SUMMARY Calderas are kilometer-scale basins formed when magma is rapidly removed from shallow magma storage zones. Despite extensive previous research, many questions remain about how host rock material properties influence the development of caldera structures. We employ a mesh-free, continuum nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2023-08, Vol.234 (2), p.887-902
Hauptverfasser: Mullet, B, Segall, P, Fávero Neto, A H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 902
container_issue 2
container_start_page 887
container_title Geophysical journal international
container_volume 234
creator Mullet, B
Segall, P
Fávero Neto, A H
description SUMMARY Calderas are kilometer-scale basins formed when magma is rapidly removed from shallow magma storage zones. Despite extensive previous research, many questions remain about how host rock material properties influence the development of caldera structures. We employ a mesh-free, continuum numerical method, Smoothed Particle Hydrodynamics (SPH) to study caldera formation, with a focus on the role of host rock material properties. SPH provides several advantages over previous numerical approaches (finite element or discrete element methods), naturally accommodating strain localization and large deformations while employing well-known constitutive models. A continuum elastoplastic constitutive model with a simple Drucker–Prager yield condition can explain many observations from analogue sandbox models of caldera development. For this loading configuration, shear band orientation is primarily controlled by the angle of dilation. Evolving shear band orientation, as commonly observed in analogue experiments, requires a constitutive model where frictional strength and dilatancy decrease with strain, approaching a state of zero volumetric strain rate. This constitutive model also explains recorded loads on the down-going trapdoor in analogue experiments. Our results, combined with theoretical scaling arguments, raise questions about the use of analogue models to study caldera formation. Finally, we apply the model to the 2018 caldera collapse at Kīlauea volcano and conclude that the host rock at Kīlauea must exhibit relatively low dilatancy to explain the inferred near-vertical ring faults.
doi_str_mv 10.1093/gji/ggad084
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggad084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggad084</oup_id><sourcerecordid>10.1093/gji/ggad084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-4d214f39ed75f926f3db1a8c4f2c8b93449b611fff7da1126ae7ee6549dbc16a3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFZX_oFZiSKx85LJJLOUUq1QtFCF7sLLfMQpSafMJIv-e1vatavL5R7u4hByD-wFmMwmzcZNmgY1K_kFGUEm8iTlYn1JRkzmIsk5W1-Tmxg3jAEHXo7I6nPoTHAKW9p5bVq3bai39NC1CUitDx32zm_pEI_TqvO-_zWaLjH0TrWGzvc6eL3fYudUpI-r5fzpllxZbKO5O-eY_LzNvqfzZPH1_jF9XSSYlkWfcJ0Ct5k0usitTIXNdA1YKm5TVdYy41zWAsBaW2gESAWawhiRc6lrBQKzMXk-_argYwzGVrvgOgz7Clh19FEdfFRnHwf64UT7Yfcv-AfA4GL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)</title><source>Oxford Journals Open Access Collection</source><creator>Mullet, B ; Segall, P ; Fávero Neto, A H</creator><creatorcontrib>Mullet, B ; Segall, P ; Fávero Neto, A H</creatorcontrib><description>SUMMARY Calderas are kilometer-scale basins formed when magma is rapidly removed from shallow magma storage zones. Despite extensive previous research, many questions remain about how host rock material properties influence the development of caldera structures. We employ a mesh-free, continuum numerical method, Smoothed Particle Hydrodynamics (SPH) to study caldera formation, with a focus on the role of host rock material properties. SPH provides several advantages over previous numerical approaches (finite element or discrete element methods), naturally accommodating strain localization and large deformations while employing well-known constitutive models. A continuum elastoplastic constitutive model with a simple Drucker–Prager yield condition can explain many observations from analogue sandbox models of caldera development. For this loading configuration, shear band orientation is primarily controlled by the angle of dilation. Evolving shear band orientation, as commonly observed in analogue experiments, requires a constitutive model where frictional strength and dilatancy decrease with strain, approaching a state of zero volumetric strain rate. This constitutive model also explains recorded loads on the down-going trapdoor in analogue experiments. Our results, combined with theoretical scaling arguments, raise questions about the use of analogue models to study caldera formation. Finally, we apply the model to the 2018 caldera collapse at Kīlauea volcano and conclude that the host rock at Kīlauea must exhibit relatively low dilatancy to explain the inferred near-vertical ring faults.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggad084</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2023-08, Vol.234 (2), p.887-902</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a287t-4d214f39ed75f926f3db1a8c4f2c8b93449b611fff7da1126ae7ee6549dbc16a3</citedby><cites>FETCH-LOGICAL-a287t-4d214f39ed75f926f3db1a8c4f2c8b93449b611fff7da1126ae7ee6549dbc16a3</cites><orcidid>0000-0002-1202-2958 ; 0000-0001-8123-4586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggad084$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Mullet, B</creatorcontrib><creatorcontrib>Segall, P</creatorcontrib><creatorcontrib>Fávero Neto, A H</creatorcontrib><title>Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)</title><title>Geophysical journal international</title><description>SUMMARY Calderas are kilometer-scale basins formed when magma is rapidly removed from shallow magma storage zones. Despite extensive previous research, many questions remain about how host rock material properties influence the development of caldera structures. We employ a mesh-free, continuum numerical method, Smoothed Particle Hydrodynamics (SPH) to study caldera formation, with a focus on the role of host rock material properties. SPH provides several advantages over previous numerical approaches (finite element or discrete element methods), naturally accommodating strain localization and large deformations while employing well-known constitutive models. A continuum elastoplastic constitutive model with a simple Drucker–Prager yield condition can explain many observations from analogue sandbox models of caldera development. For this loading configuration, shear band orientation is primarily controlled by the angle of dilation. Evolving shear band orientation, as commonly observed in analogue experiments, requires a constitutive model where frictional strength and dilatancy decrease with strain, approaching a state of zero volumetric strain rate. This constitutive model also explains recorded loads on the down-going trapdoor in analogue experiments. Our results, combined with theoretical scaling arguments, raise questions about the use of analogue models to study caldera formation. Finally, we apply the model to the 2018 caldera collapse at Kīlauea volcano and conclude that the host rock at Kīlauea must exhibit relatively low dilatancy to explain the inferred near-vertical ring faults.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRsFZX_oFZiSKx85LJJLOUUq1QtFCF7sLLfMQpSafMJIv-e1vatavL5R7u4hByD-wFmMwmzcZNmgY1K_kFGUEm8iTlYn1JRkzmIsk5W1-Tmxg3jAEHXo7I6nPoTHAKW9p5bVq3bai39NC1CUitDx32zm_pEI_TqvO-_zWaLjH0TrWGzvc6eL3fYudUpI-r5fzpllxZbKO5O-eY_LzNvqfzZPH1_jF9XSSYlkWfcJ0Ct5k0usitTIXNdA1YKm5TVdYy41zWAsBaW2gESAWawhiRc6lrBQKzMXk-_argYwzGVrvgOgz7Clh19FEdfFRnHwf64UT7Yfcv-AfA4GL4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mullet, B</creator><creator>Segall, P</creator><creator>Fávero Neto, A H</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1202-2958</orcidid><orcidid>https://orcid.org/0000-0001-8123-4586</orcidid></search><sort><creationdate>20230801</creationdate><title>Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)</title><author>Mullet, B ; Segall, P ; Fávero Neto, A H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-4d214f39ed75f926f3db1a8c4f2c8b93449b611fff7da1126ae7ee6549dbc16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mullet, B</creatorcontrib><creatorcontrib>Segall, P</creatorcontrib><creatorcontrib>Fávero Neto, A H</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mullet, B</au><au>Segall, P</au><au>Fávero Neto, A H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)</atitle><jtitle>Geophysical journal international</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>234</volume><issue>2</issue><spage>887</spage><epage>902</epage><pages>887-902</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY Calderas are kilometer-scale basins formed when magma is rapidly removed from shallow magma storage zones. Despite extensive previous research, many questions remain about how host rock material properties influence the development of caldera structures. We employ a mesh-free, continuum numerical method, Smoothed Particle Hydrodynamics (SPH) to study caldera formation, with a focus on the role of host rock material properties. SPH provides several advantages over previous numerical approaches (finite element or discrete element methods), naturally accommodating strain localization and large deformations while employing well-known constitutive models. A continuum elastoplastic constitutive model with a simple Drucker–Prager yield condition can explain many observations from analogue sandbox models of caldera development. For this loading configuration, shear band orientation is primarily controlled by the angle of dilation. Evolving shear band orientation, as commonly observed in analogue experiments, requires a constitutive model where frictional strength and dilatancy decrease with strain, approaching a state of zero volumetric strain rate. This constitutive model also explains recorded loads on the down-going trapdoor in analogue experiments. Our results, combined with theoretical scaling arguments, raise questions about the use of analogue models to study caldera formation. Finally, we apply the model to the 2018 caldera collapse at Kīlauea volcano and conclude that the host rock at Kīlauea must exhibit relatively low dilatancy to explain the inferred near-vertical ring faults.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggad084</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1202-2958</orcidid><orcidid>https://orcid.org/0000-0001-8123-4586</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2023-08, Vol.234 (2), p.887-902
issn 0956-540X
1365-246X
language eng
recordid cdi_crossref_primary_10_1093_gji_ggad084
source Oxford Journals Open Access Collection
title Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20caldera%20formation%20using%20Smoothed%20Particle%20Hydrodynamics%20(SPH)&rft.jtitle=Geophysical%20journal%20international&rft.au=Mullet,%20B&rft.date=2023-08-01&rft.volume=234&rft.issue=2&rft.spage=887&rft.epage=902&rft.pages=887-902&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggad084&rft_dat=%3Coup_TOX%3E10.1093/gji/ggad084%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggad084&rfr_iscdi=true