3-D Bayesian variational full waveform inversion
SUMMARY Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly non-linear and non-unique inverse problem. Bayesian inference is therefore used to quantify uncertainties...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2023-07, Vol.234 (1), p.546-561 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | 1 |
container_start_page | 546 |
container_title | Geophysical journal international |
container_volume | 234 |
creator | Zhang, Xin Lomas, Angus Zhou, Muhong Zheng, York Curtis, Andrew |
description | SUMMARY
Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly non-linear and non-unique inverse problem. Bayesian inference is therefore used to quantify uncertainties in the solution. Variational inference is a method that provides probabilistic, Bayesian solutions efficiently using optimization. The method has been applied to 2-D FWI problems to produce full Bayesian posterior distributions. However, due to higher dimensionality and more expensive computational cost, the performance of the method in 3-D FWI problems remains unknown. We apply three variational inference methods to 3-D FWI and analyse their performance. Specifically, we apply automatic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD), to a 3-D FWI problem and compare their results and computational cost. The results show that ADVI is the most computationally efficient method but systematically underestimates the uncertainty. The method can therefore be used to provide relatively rapid but approximate insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD demands the highest computational cost, and still produces biased results. In contrast, by including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte Carlo method and provides the most accurate results at intermediate computational cost. We thus conclude that 3-D variational FWI is practically applicable, at least in small problems, and can be used to image the Earth’s interior and to provide reasonable uncertainty estimates on those images. |
doi_str_mv | 10.1093/gji/ggad057 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggad057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggad057</oup_id><sourcerecordid>10.1093/gji/ggad057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-b4b8b83e7064a9ec72d2cf5a597fe2c0b069ea461fe9e9e4eb7b16b988e6542e3</originalsourceid><addsrcrecordid>eNp9jz1rwzAURUVpoW7aqX_AU5ei5kmWZGts008IdGkhm3lynoyCEwcpccm_r0sylzvc4R4uHMZuBTwIsMW0XYVp2-ISdHnGMlEYzaUyi3OWgdWGawWLS3aV0gpAKKGqjEHBn_MnPFAKuMkHjAF3od9gl_t91-U_OJDv4zoPm4FiGpdrduGxS3Rz6gn7fn35mr3z-efbx-xxzrGQasedcpWrCirBKLTUlHIpG69R29KTbMCBsYTKCE92jCJXOmGcrSoyWkkqJuz--NvEPqVIvt7GsMZ4qAXUf7L1KFufZEf67kj3--2_4C8DO1Yp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3-D Bayesian variational full waveform inversion</title><source>Oxford Journals website</source><creator>Zhang, Xin ; Lomas, Angus ; Zhou, Muhong ; Zheng, York ; Curtis, Andrew</creator><creatorcontrib>Zhang, Xin ; Lomas, Angus ; Zhou, Muhong ; Zheng, York ; Curtis, Andrew</creatorcontrib><description>SUMMARY
Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly non-linear and non-unique inverse problem. Bayesian inference is therefore used to quantify uncertainties in the solution. Variational inference is a method that provides probabilistic, Bayesian solutions efficiently using optimization. The method has been applied to 2-D FWI problems to produce full Bayesian posterior distributions. However, due to higher dimensionality and more expensive computational cost, the performance of the method in 3-D FWI problems remains unknown. We apply three variational inference methods to 3-D FWI and analyse their performance. Specifically, we apply automatic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD), to a 3-D FWI problem and compare their results and computational cost. The results show that ADVI is the most computationally efficient method but systematically underestimates the uncertainty. The method can therefore be used to provide relatively rapid but approximate insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD demands the highest computational cost, and still produces biased results. In contrast, by including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte Carlo method and provides the most accurate results at intermediate computational cost. We thus conclude that 3-D variational FWI is practically applicable, at least in small problems, and can be used to image the Earth’s interior and to provide reasonable uncertainty estimates on those images.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggad057</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2023-07, Vol.234 (1), p.546-561</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-b4b8b83e7064a9ec72d2cf5a597fe2c0b069ea461fe9e9e4eb7b16b988e6542e3</citedby><cites>FETCH-LOGICAL-a324t-b4b8b83e7064a9ec72d2cf5a597fe2c0b069ea461fe9e9e4eb7b16b988e6542e3</cites><orcidid>0000-0003-0344-1453 ; 0000-0002-5341-3306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lomas, Angus</creatorcontrib><creatorcontrib>Zhou, Muhong</creatorcontrib><creatorcontrib>Zheng, York</creatorcontrib><creatorcontrib>Curtis, Andrew</creatorcontrib><title>3-D Bayesian variational full waveform inversion</title><title>Geophysical journal international</title><description>SUMMARY
Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly non-linear and non-unique inverse problem. Bayesian inference is therefore used to quantify uncertainties in the solution. Variational inference is a method that provides probabilistic, Bayesian solutions efficiently using optimization. The method has been applied to 2-D FWI problems to produce full Bayesian posterior distributions. However, due to higher dimensionality and more expensive computational cost, the performance of the method in 3-D FWI problems remains unknown. We apply three variational inference methods to 3-D FWI and analyse their performance. Specifically, we apply automatic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD), to a 3-D FWI problem and compare their results and computational cost. The results show that ADVI is the most computationally efficient method but systematically underestimates the uncertainty. The method can therefore be used to provide relatively rapid but approximate insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD demands the highest computational cost, and still produces biased results. In contrast, by including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte Carlo method and provides the most accurate results at intermediate computational cost. We thus conclude that 3-D variational FWI is practically applicable, at least in small problems, and can be used to image the Earth’s interior and to provide reasonable uncertainty estimates on those images.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9jz1rwzAURUVpoW7aqX_AU5ei5kmWZGts008IdGkhm3lynoyCEwcpccm_r0sylzvc4R4uHMZuBTwIsMW0XYVp2-ISdHnGMlEYzaUyi3OWgdWGawWLS3aV0gpAKKGqjEHBn_MnPFAKuMkHjAF3od9gl_t91-U_OJDv4zoPm4FiGpdrduGxS3Rz6gn7fn35mr3z-efbx-xxzrGQasedcpWrCirBKLTUlHIpG69R29KTbMCBsYTKCE92jCJXOmGcrSoyWkkqJuz--NvEPqVIvt7GsMZ4qAXUf7L1KFufZEf67kj3--2_4C8DO1Yp</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhang, Xin</creator><creator>Lomas, Angus</creator><creator>Zhou, Muhong</creator><creator>Zheng, York</creator><creator>Curtis, Andrew</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0344-1453</orcidid><orcidid>https://orcid.org/0000-0002-5341-3306</orcidid></search><sort><creationdate>20230701</creationdate><title>3-D Bayesian variational full waveform inversion</title><author>Zhang, Xin ; Lomas, Angus ; Zhou, Muhong ; Zheng, York ; Curtis, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-b4b8b83e7064a9ec72d2cf5a597fe2c0b069ea461fe9e9e4eb7b16b988e6542e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lomas, Angus</creatorcontrib><creatorcontrib>Zhou, Muhong</creatorcontrib><creatorcontrib>Zheng, York</creatorcontrib><creatorcontrib>Curtis, Andrew</creatorcontrib><collection>Oxford Journals website</collection><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Lomas, Angus</au><au>Zhou, Muhong</au><au>Zheng, York</au><au>Curtis, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Bayesian variational full waveform inversion</atitle><jtitle>Geophysical journal international</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>234</volume><issue>1</issue><spage>546</spage><epage>561</epage><pages>546-561</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY
Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly non-linear and non-unique inverse problem. Bayesian inference is therefore used to quantify uncertainties in the solution. Variational inference is a method that provides probabilistic, Bayesian solutions efficiently using optimization. The method has been applied to 2-D FWI problems to produce full Bayesian posterior distributions. However, due to higher dimensionality and more expensive computational cost, the performance of the method in 3-D FWI problems remains unknown. We apply three variational inference methods to 3-D FWI and analyse their performance. Specifically, we apply automatic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD), to a 3-D FWI problem and compare their results and computational cost. The results show that ADVI is the most computationally efficient method but systematically underestimates the uncertainty. The method can therefore be used to provide relatively rapid but approximate insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD demands the highest computational cost, and still produces biased results. In contrast, by including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte Carlo method and provides the most accurate results at intermediate computational cost. We thus conclude that 3-D variational FWI is practically applicable, at least in small problems, and can be used to image the Earth’s interior and to provide reasonable uncertainty estimates on those images.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggad057</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0344-1453</orcidid><orcidid>https://orcid.org/0000-0002-5341-3306</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-540X |
ispartof | Geophysical journal international, 2023-07, Vol.234 (1), p.546-561 |
issn | 0956-540X 1365-246X |
language | eng |
recordid | cdi_crossref_primary_10_1093_gji_ggad057 |
source | Oxford Journals website |
title | 3-D Bayesian variational full waveform inversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Bayesian%20variational%20full%20waveform%20inversion&rft.jtitle=Geophysical%20journal%20international&rft.au=Zhang,%20Xin&rft.date=2023-07-01&rft.volume=234&rft.issue=1&rft.spage=546&rft.epage=561&rft.pages=546-561&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggad057&rft_dat=%3Coup_cross%3E10.1093/gji/ggad057%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggad057&rfr_iscdi=true |