A finite-difference method for stress modelling based on wave propagation

SUMMARY The determinations of detailed stress states are of great importance for various environmental and engineering investigations, which makes numerical stress modelling a key issue in many fields. We developed a new stress modelling method governed by elastic wave equations using finite-differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2023-06, Vol.233 (3), p.2280-2295
Hauptverfasser: Fan, Zhuo, Cheng, Fei, Liu, Jiangping, Han, Bingkai, Zheng, Yunpeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2295
container_issue 3
container_start_page 2280
container_title Geophysical journal international
container_volume 233
creator Fan, Zhuo
Cheng, Fei
Liu, Jiangping
Han, Bingkai
Zheng, Yunpeng
description SUMMARY The determinations of detailed stress states are of great importance for various environmental and engineering investigations, which makes numerical stress modelling a key issue in many fields. We developed a new stress modelling method governed by elastic wave equations using finite-difference scheme. By introducing an artificial damping factor to the particle velocity in wave modelling, the proposed method is able to solve both the dynamic stress evolution and the static stress state of equilibrium. We validate the proposed method both in body force and surface force benchmarks in different scales. With the proposed method, we are able to substantially improve the modelling accuracy of models in unbounded domain by using the perfectly matched layer as the artificial boundary conditions. A 3-D concrete-faced rockfill dam model is further presented as a numerical example of practical investigation. The consistent results with the finite-element method further illustrate the proposed method's applicability. As a minor modification to wave modelling scheme, the proposed stress modelling method is not only accurate for geological models through different scales, but also physically reasonable and easy to implement for geophysicists.
doi_str_mv 10.1093/gji/ggad054
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggad054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggad054</oup_id><sourcerecordid>10.1093/gji/ggad054</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-4459af2da3f954ab652cd249643d5a5b266e35019d49aae33fdd8e051f3556cf3</originalsourceid><addsrcrecordid>eNp90D1PwzAUhWELgUQpTPwBTywo1I59rXqsKj4qVWIBqVt0E18HV0kc2QHEv6eonZnO8ugML2O3UjxIYdWi3YdF26IToM_YTCoDRanN7pzNhAVTgBa7S3aV814IqaVezthmxX0YwkSFC95ToqEh3tP0ER33MfE8JcqZ99FR14Wh5TVmcjwO_Bu_iI8pjtjiFOJwzS48dpluTjtn70-Pb-uXYvv6vFmvtgWWGqZCa7DoS4fKW9BYGygbV2prtHKAUJfGkAIhrdMWkZTyzi1JgPQKwDRezdn98bdJMedEvhpT6DH9VFJUfxWqQ4XqVOGg7446fo7_wl9ESl8D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A finite-difference method for stress modelling based on wave propagation</title><source>Oxford Journals Open Access Collection</source><creator>Fan, Zhuo ; Cheng, Fei ; Liu, Jiangping ; Han, Bingkai ; Zheng, Yunpeng</creator><creatorcontrib>Fan, Zhuo ; Cheng, Fei ; Liu, Jiangping ; Han, Bingkai ; Zheng, Yunpeng</creatorcontrib><description>SUMMARY The determinations of detailed stress states are of great importance for various environmental and engineering investigations, which makes numerical stress modelling a key issue in many fields. We developed a new stress modelling method governed by elastic wave equations using finite-difference scheme. By introducing an artificial damping factor to the particle velocity in wave modelling, the proposed method is able to solve both the dynamic stress evolution and the static stress state of equilibrium. We validate the proposed method both in body force and surface force benchmarks in different scales. With the proposed method, we are able to substantially improve the modelling accuracy of models in unbounded domain by using the perfectly matched layer as the artificial boundary conditions. A 3-D concrete-faced rockfill dam model is further presented as a numerical example of practical investigation. The consistent results with the finite-element method further illustrate the proposed method's applicability. As a minor modification to wave modelling scheme, the proposed stress modelling method is not only accurate for geological models through different scales, but also physically reasonable and easy to implement for geophysicists.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggad054</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2023-06, Vol.233 (3), p.2280-2295</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-4459af2da3f954ab652cd249643d5a5b266e35019d49aae33fdd8e051f3556cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggad054$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Fan, Zhuo</creatorcontrib><creatorcontrib>Cheng, Fei</creatorcontrib><creatorcontrib>Liu, Jiangping</creatorcontrib><creatorcontrib>Han, Bingkai</creatorcontrib><creatorcontrib>Zheng, Yunpeng</creatorcontrib><title>A finite-difference method for stress modelling based on wave propagation</title><title>Geophysical journal international</title><description>SUMMARY The determinations of detailed stress states are of great importance for various environmental and engineering investigations, which makes numerical stress modelling a key issue in many fields. We developed a new stress modelling method governed by elastic wave equations using finite-difference scheme. By introducing an artificial damping factor to the particle velocity in wave modelling, the proposed method is able to solve both the dynamic stress evolution and the static stress state of equilibrium. We validate the proposed method both in body force and surface force benchmarks in different scales. With the proposed method, we are able to substantially improve the modelling accuracy of models in unbounded domain by using the perfectly matched layer as the artificial boundary conditions. A 3-D concrete-faced rockfill dam model is further presented as a numerical example of practical investigation. The consistent results with the finite-element method further illustrate the proposed method's applicability. As a minor modification to wave modelling scheme, the proposed stress modelling method is not only accurate for geological models through different scales, but also physically reasonable and easy to implement for geophysicists.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAUhWELgUQpTPwBTywo1I59rXqsKj4qVWIBqVt0E18HV0kc2QHEv6eonZnO8ugML2O3UjxIYdWi3YdF26IToM_YTCoDRanN7pzNhAVTgBa7S3aV814IqaVezthmxX0YwkSFC95ToqEh3tP0ER33MfE8JcqZ99FR14Wh5TVmcjwO_Bu_iI8pjtjiFOJwzS48dpluTjtn70-Pb-uXYvv6vFmvtgWWGqZCa7DoS4fKW9BYGygbV2prtHKAUJfGkAIhrdMWkZTyzi1JgPQKwDRezdn98bdJMedEvhpT6DH9VFJUfxWqQ4XqVOGg7446fo7_wl9ESl8D</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fan, Zhuo</creator><creator>Cheng, Fei</creator><creator>Liu, Jiangping</creator><creator>Han, Bingkai</creator><creator>Zheng, Yunpeng</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>A finite-difference method for stress modelling based on wave propagation</title><author>Fan, Zhuo ; Cheng, Fei ; Liu, Jiangping ; Han, Bingkai ; Zheng, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-4459af2da3f954ab652cd249643d5a5b266e35019d49aae33fdd8e051f3556cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Zhuo</creatorcontrib><creatorcontrib>Cheng, Fei</creatorcontrib><creatorcontrib>Liu, Jiangping</creatorcontrib><creatorcontrib>Han, Bingkai</creatorcontrib><creatorcontrib>Zheng, Yunpeng</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Zhuo</au><au>Cheng, Fei</au><au>Liu, Jiangping</au><au>Han, Bingkai</au><au>Zheng, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite-difference method for stress modelling based on wave propagation</atitle><jtitle>Geophysical journal international</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>233</volume><issue>3</issue><spage>2280</spage><epage>2295</epage><pages>2280-2295</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY The determinations of detailed stress states are of great importance for various environmental and engineering investigations, which makes numerical stress modelling a key issue in many fields. We developed a new stress modelling method governed by elastic wave equations using finite-difference scheme. By introducing an artificial damping factor to the particle velocity in wave modelling, the proposed method is able to solve both the dynamic stress evolution and the static stress state of equilibrium. We validate the proposed method both in body force and surface force benchmarks in different scales. With the proposed method, we are able to substantially improve the modelling accuracy of models in unbounded domain by using the perfectly matched layer as the artificial boundary conditions. A 3-D concrete-faced rockfill dam model is further presented as a numerical example of practical investigation. The consistent results with the finite-element method further illustrate the proposed method's applicability. As a minor modification to wave modelling scheme, the proposed stress modelling method is not only accurate for geological models through different scales, but also physically reasonable and easy to implement for geophysicists.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggad054</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2023-06, Vol.233 (3), p.2280-2295
issn 0956-540X
1365-246X
language eng
recordid cdi_crossref_primary_10_1093_gji_ggad054
source Oxford Journals Open Access Collection
title A finite-difference method for stress modelling based on wave propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite-difference%20method%20for%20stress%20modelling%20based%20on%20wave%20propagation&rft.jtitle=Geophysical%20journal%20international&rft.au=Fan,%20Zhuo&rft.date=2023-06-01&rft.volume=233&rft.issue=3&rft.spage=2280&rft.epage=2295&rft.pages=2280-2295&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggad054&rft_dat=%3Coup_TOX%3E10.1093/gji/ggad054%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggad054&rfr_iscdi=true