An alternative method for estimating effective elastic thickness by the Vening Meinesz regional isostatic theory with application to continents

SUMMARY Effective elastic thickness, ${T_\mathrm{ e}}$, is a measure of the lithosphere's mechanical strength, and describes the flexural response of the lithosphere to applied loads in the same way as a thin elastic plate. In this study, a new method for estimating ${T_\mathrm{ e}}$ in the spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2023-05, Vol.233 (2), p.1444-1459
Hauptverfasser: Zhang, Xingyu, Kaban, Mikhail K, Chen, Chao, Liang, Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 2
container_start_page 1444
container_title Geophysical journal international
container_volume 233
creator Zhang, Xingyu
Kaban, Mikhail K
Chen, Chao
Liang, Qing
description SUMMARY Effective elastic thickness, ${T_\mathrm{ e}}$, is a measure of the lithosphere's mechanical strength, and describes the flexural response of the lithosphere to applied loads in the same way as a thin elastic plate. In this study, a new method for estimating ${T_\mathrm{ e}}$ in the spatial domain is presented based on the Veining Meinesz regional isostatic theory. By comparing the absolute values of the correlation coefficients between the observed Moho flexure model and different Veining Meinesz Moho flexure models, the optimal ${T_\mathrm{ e}}$ is determined. Also, the estimated correlation coefficients can be used to examine the effect of the unknown subsurface loads, which are usually difficult to evaluate in the spatial domain. This method is verified to be capable of recovering ${T_\mathrm{ e}}$ variations through synthetic tests for the models with predefined ${T_\mathrm{ e}}$ variations. Finally, the effective elastic thickness is globally determined for the continents using the topography data and recent seismically-derived Moho model. These results are compared with two published ${T_\mathrm{ e}}$ models obtained with different methods. For the areas with relatively small Moho uncertainties and high correlation coefficients, the estimated ${T_\mathrm{ e}}$ variations generally agree with previous results. The differences between three ${T_\mathrm{ e}}$ estimates could characterize the advantages of different methods in specific cases.
doi_str_mv 10.1093/gji/ggac518
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggac518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggac518</oup_id><sourcerecordid>10.1093/gji/ggac518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-832dc6f00a5614d9aa058eb46a4db50fc8d543ff0109732773b2f23fc20a339e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4ge8YoNC_UyTZVXxkorYAOoucpxx6pLaUWxA5Sf4ZVzaNStr7pzxaA5Cl5TcUFLySbu2k7ZVWtLiCI0oz2XGRL48RiNSyjyTgixP0VkIa0KooKIYoZ-Zw6qLMDgV7SfgDcSVb7DxA4YQ7SalrsVgDOi_PnQqxRrHldXvDkLA9TYVgN_A7cgnsCn9xgO01jvVYRt8iGo_An7Y4i8bV1j1fWd1ir3D0WPtXdoDLoZzdGJUF-Di8I7R693ty_whWzzfP85ni0yxgsWs4KzRuSFEyZyKplSKyAJqkSvR1JIYXTRScGNI0jLlbDrlNTOMG82I4rwEPkbX-3_14EMYwFT9kK4dthUl1c5llVxWB5eJvtrT_qP_F_wFZ9J6Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An alternative method for estimating effective elastic thickness by the Vening Meinesz regional isostatic theory with application to continents</title><source>Oxford Journals Open Access Collection</source><creator>Zhang, Xingyu ; Kaban, Mikhail K ; Chen, Chao ; Liang, Qing</creator><creatorcontrib>Zhang, Xingyu ; Kaban, Mikhail K ; Chen, Chao ; Liang, Qing</creatorcontrib><description>SUMMARY Effective elastic thickness, ${T_\mathrm{ e}}$, is a measure of the lithosphere's mechanical strength, and describes the flexural response of the lithosphere to applied loads in the same way as a thin elastic plate. In this study, a new method for estimating ${T_\mathrm{ e}}$ in the spatial domain is presented based on the Veining Meinesz regional isostatic theory. By comparing the absolute values of the correlation coefficients between the observed Moho flexure model and different Veining Meinesz Moho flexure models, the optimal ${T_\mathrm{ e}}$ is determined. Also, the estimated correlation coefficients can be used to examine the effect of the unknown subsurface loads, which are usually difficult to evaluate in the spatial domain. This method is verified to be capable of recovering ${T_\mathrm{ e}}$ variations through synthetic tests for the models with predefined ${T_\mathrm{ e}}$ variations. Finally, the effective elastic thickness is globally determined for the continents using the topography data and recent seismically-derived Moho model. These results are compared with two published ${T_\mathrm{ e}}$ models obtained with different methods. For the areas with relatively small Moho uncertainties and high correlation coefficients, the estimated ${T_\mathrm{ e}}$ variations generally agree with previous results. The differences between three ${T_\mathrm{ e}}$ estimates could characterize the advantages of different methods in specific cases.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggac518</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2023-05, Vol.233 (2), p.1444-1459</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a282t-832dc6f00a5614d9aa058eb46a4db50fc8d543ff0109732773b2f23fc20a339e3</cites><orcidid>0000-0003-2310-6679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggac518$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Zhang, Xingyu</creatorcontrib><creatorcontrib>Kaban, Mikhail K</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Liang, Qing</creatorcontrib><title>An alternative method for estimating effective elastic thickness by the Vening Meinesz regional isostatic theory with application to continents</title><title>Geophysical journal international</title><description>SUMMARY Effective elastic thickness, ${T_\mathrm{ e}}$, is a measure of the lithosphere's mechanical strength, and describes the flexural response of the lithosphere to applied loads in the same way as a thin elastic plate. In this study, a new method for estimating ${T_\mathrm{ e}}$ in the spatial domain is presented based on the Veining Meinesz regional isostatic theory. By comparing the absolute values of the correlation coefficients between the observed Moho flexure model and different Veining Meinesz Moho flexure models, the optimal ${T_\mathrm{ e}}$ is determined. Also, the estimated correlation coefficients can be used to examine the effect of the unknown subsurface loads, which are usually difficult to evaluate in the spatial domain. This method is verified to be capable of recovering ${T_\mathrm{ e}}$ variations through synthetic tests for the models with predefined ${T_\mathrm{ e}}$ variations. Finally, the effective elastic thickness is globally determined for the continents using the topography data and recent seismically-derived Moho model. These results are compared with two published ${T_\mathrm{ e}}$ models obtained with different methods. For the areas with relatively small Moho uncertainties and high correlation coefficients, the estimated ${T_\mathrm{ e}}$ variations generally agree with previous results. The differences between three ${T_\mathrm{ e}}$ estimates could characterize the advantages of different methods in specific cases.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4ge8YoNC_UyTZVXxkorYAOoucpxx6pLaUWxA5Sf4ZVzaNStr7pzxaA5Cl5TcUFLySbu2k7ZVWtLiCI0oz2XGRL48RiNSyjyTgixP0VkIa0KooKIYoZ-Zw6qLMDgV7SfgDcSVb7DxA4YQ7SalrsVgDOi_PnQqxRrHldXvDkLA9TYVgN_A7cgnsCn9xgO01jvVYRt8iGo_An7Y4i8bV1j1fWd1ir3D0WPtXdoDLoZzdGJUF-Di8I7R693ty_whWzzfP85ni0yxgsWs4KzRuSFEyZyKplSKyAJqkSvR1JIYXTRScGNI0jLlbDrlNTOMG82I4rwEPkbX-3_14EMYwFT9kK4dthUl1c5llVxWB5eJvtrT_qP_F_wFZ9J6Hg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhang, Xingyu</creator><creator>Kaban, Mikhail K</creator><creator>Chen, Chao</creator><creator>Liang, Qing</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2310-6679</orcidid></search><sort><creationdate>20230501</creationdate><title>An alternative method for estimating effective elastic thickness by the Vening Meinesz regional isostatic theory with application to continents</title><author>Zhang, Xingyu ; Kaban, Mikhail K ; Chen, Chao ; Liang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-832dc6f00a5614d9aa058eb46a4db50fc8d543ff0109732773b2f23fc20a339e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xingyu</creatorcontrib><creatorcontrib>Kaban, Mikhail K</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Liang, Qing</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xingyu</au><au>Kaban, Mikhail K</au><au>Chen, Chao</au><au>Liang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative method for estimating effective elastic thickness by the Vening Meinesz regional isostatic theory with application to continents</atitle><jtitle>Geophysical journal international</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>233</volume><issue>2</issue><spage>1444</spage><epage>1459</epage><pages>1444-1459</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY Effective elastic thickness, ${T_\mathrm{ e}}$, is a measure of the lithosphere's mechanical strength, and describes the flexural response of the lithosphere to applied loads in the same way as a thin elastic plate. In this study, a new method for estimating ${T_\mathrm{ e}}$ in the spatial domain is presented based on the Veining Meinesz regional isostatic theory. By comparing the absolute values of the correlation coefficients between the observed Moho flexure model and different Veining Meinesz Moho flexure models, the optimal ${T_\mathrm{ e}}$ is determined. Also, the estimated correlation coefficients can be used to examine the effect of the unknown subsurface loads, which are usually difficult to evaluate in the spatial domain. This method is verified to be capable of recovering ${T_\mathrm{ e}}$ variations through synthetic tests for the models with predefined ${T_\mathrm{ e}}$ variations. Finally, the effective elastic thickness is globally determined for the continents using the topography data and recent seismically-derived Moho model. These results are compared with two published ${T_\mathrm{ e}}$ models obtained with different methods. For the areas with relatively small Moho uncertainties and high correlation coefficients, the estimated ${T_\mathrm{ e}}$ variations generally agree with previous results. The differences between three ${T_\mathrm{ e}}$ estimates could characterize the advantages of different methods in specific cases.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggac518</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2310-6679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2023-05, Vol.233 (2), p.1444-1459
issn 0956-540X
1365-246X
language eng
recordid cdi_crossref_primary_10_1093_gji_ggac518
source Oxford Journals Open Access Collection
title An alternative method for estimating effective elastic thickness by the Vening Meinesz regional isostatic theory with application to continents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20method%20for%20estimating%20effective%20elastic%20thickness%20by%20the%20Vening%20Meinesz%20regional%20isostatic%20theory%20with%20application%20to%20continents&rft.jtitle=Geophysical%20journal%20international&rft.au=Zhang,%20Xingyu&rft.date=2023-05-01&rft.volume=233&rft.issue=2&rft.spage=1444&rft.epage=1459&rft.pages=1444-1459&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggac518&rft_dat=%3Coup_TOX%3E10.1093/gji/ggac518%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggac518&rfr_iscdi=true