Accuracy and precision of frequency–size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg–Richter law b-value for earthquakes
SUMMARY Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an exponential scaling of event magnitude (m) on a logarithmic scale, for example the Gutenberg–Richter law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic expression...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2023-11, Vol.232 (3), p.2080-2086 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2086 |
---|---|
container_issue | 3 |
container_start_page | 2080 |
container_title | Geophysical journal international |
container_volume | 232 |
creator | Geffers, G-M Main, I G Naylor, M |
description | SUMMARY
Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an exponential scaling of event magnitude (m) on a logarithmic scale, for example the Gutenberg–Richter law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic expression for the bias that arises in the maximum likelihood estimate of b as a function of the dynamic range r. The theory predicts the observed evolution of the modal value of mean magnitude in multiple random samples of synthetic catalogues at different r, including the bias to high b at low r and the observed trend to an asymptotic limit with no bias. The situation is more complicated for a single sample in real catalogues due to their heterogeneity, magnitude uncertainty and the true b-value being unknown. The results explain why the likelihood of large events and the associated hazard is often underestimated in small catalogues with low dynamic range, for example in some studies of volcanic and induced seismicity. |
doi_str_mv | 10.1093/gji/ggac436 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggac436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggac436</oup_id><sourcerecordid>10.1093/gji/ggac436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-648d0a52a661ef76d58650719f4ab4cd499edfea704885c0e2ab72414e2644eb3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZPvsCevEjsJtlsEm9FtAoFQRR6C5PNbLo1TdLdpBpPvoNP4-v4JCa2Z2FgYP6Pf-Aj5NxlVy6L_Um-0pM8B8l9cUBGri8Cx-NicUhGLA6EE3C2OCYn1q4Yc7nLoxH5nkrZGpAdhTKjtUGpra5KWimqDG5aLGX38_ll9QfSTNvG6LRtBsBKKHSZ0xoMrLFBYyn0Q1VbymbfkHUlrLWkBsoch0OVWjRbGHJ7TfEd1nXxFzRLpLO2wTJFk_f_nrRc9p20gDeaOlsoWqSqMhTBNMtNC69oT8mRgsLi2X6Pycvd7fPNvTN_nD3cTOcO-B5vHMGjjEHggRAuqlBkQSQCFrqx4pBymfE4xkwhhIxHUSAZepCGXi8HPcE5pv6YXO56pamsNaiS2ug1mC5xWTJYT3rryd56T1_s6Kqt_wV_ASb8i0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accuracy and precision of frequency–size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg–Richter law b-value for earthquakes</title><source>Oxford Journals Open Access Collection</source><creator>Geffers, G-M ; Main, I G ; Naylor, M</creator><creatorcontrib>Geffers, G-M ; Main, I G ; Naylor, M</creatorcontrib><description>SUMMARY
Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an exponential scaling of event magnitude (m) on a logarithmic scale, for example the Gutenberg–Richter law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic expression for the bias that arises in the maximum likelihood estimate of b as a function of the dynamic range r. The theory predicts the observed evolution of the modal value of mean magnitude in multiple random samples of synthetic catalogues at different r, including the bias to high b at low r and the observed trend to an asymptotic limit with no bias. The situation is more complicated for a single sample in real catalogues due to their heterogeneity, magnitude uncertainty and the true b-value being unknown. The results explain why the likelihood of large events and the associated hazard is often underestimated in small catalogues with low dynamic range, for example in some studies of volcanic and induced seismicity.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggac436</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2023-11, Vol.232 (3), p.2080-2086</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-648d0a52a661ef76d58650719f4ab4cd499edfea704885c0e2ab72414e2644eb3</citedby><cites>FETCH-LOGICAL-a324t-648d0a52a661ef76d58650719f4ab4cd499edfea704885c0e2ab72414e2644eb3</cites><orcidid>0000-0002-3761-5522 ; 0000-0001-5243-559X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Geffers, G-M</creatorcontrib><creatorcontrib>Main, I G</creatorcontrib><creatorcontrib>Naylor, M</creatorcontrib><title>Accuracy and precision of frequency–size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg–Richter law b-value for earthquakes</title><title>Geophysical journal international</title><description>SUMMARY
Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an exponential scaling of event magnitude (m) on a logarithmic scale, for example the Gutenberg–Richter law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic expression for the bias that arises in the maximum likelihood estimate of b as a function of the dynamic range r. The theory predicts the observed evolution of the modal value of mean magnitude in multiple random samples of synthetic catalogues at different r, including the bias to high b at low r and the observed trend to an asymptotic limit with no bias. The situation is more complicated for a single sample in real catalogues due to their heterogeneity, magnitude uncertainty and the true b-value being unknown. The results explain why the likelihood of large events and the associated hazard is often underestimated in small catalogues with low dynamic range, for example in some studies of volcanic and induced seismicity.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kMFKw0AQhhdRsFZPvsCevEjsJtlsEm9FtAoFQRR6C5PNbLo1TdLdpBpPvoNP4-v4JCa2Z2FgYP6Pf-Aj5NxlVy6L_Um-0pM8B8l9cUBGri8Cx-NicUhGLA6EE3C2OCYn1q4Yc7nLoxH5nkrZGpAdhTKjtUGpra5KWimqDG5aLGX38_ll9QfSTNvG6LRtBsBKKHSZ0xoMrLFBYyn0Q1VbymbfkHUlrLWkBsoch0OVWjRbGHJ7TfEd1nXxFzRLpLO2wTJFk_f_nrRc9p20gDeaOlsoWqSqMhTBNMtNC69oT8mRgsLi2X6Pycvd7fPNvTN_nD3cTOcO-B5vHMGjjEHggRAuqlBkQSQCFrqx4pBymfE4xkwhhIxHUSAZepCGXi8HPcE5pv6YXO56pamsNaiS2ug1mC5xWTJYT3rryd56T1_s6Kqt_wV_ASb8i0Q</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Geffers, G-M</creator><creator>Main, I G</creator><creator>Naylor, M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3761-5522</orcidid><orcidid>https://orcid.org/0000-0001-5243-559X</orcidid></search><sort><creationdate>20231122</creationdate><title>Accuracy and precision of frequency–size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg–Richter law b-value for earthquakes</title><author>Geffers, G-M ; Main, I G ; Naylor, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-648d0a52a661ef76d58650719f4ab4cd499edfea704885c0e2ab72414e2644eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geffers, G-M</creatorcontrib><creatorcontrib>Main, I G</creatorcontrib><creatorcontrib>Naylor, M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geffers, G-M</au><au>Main, I G</au><au>Naylor, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy and precision of frequency–size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg–Richter law b-value for earthquakes</atitle><jtitle>Geophysical journal international</jtitle><date>2023-11-22</date><risdate>2023</risdate><volume>232</volume><issue>3</issue><spage>2080</spage><epage>2086</epage><pages>2080-2086</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY
Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an exponential scaling of event magnitude (m) on a logarithmic scale, for example the Gutenberg–Richter law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic expression for the bias that arises in the maximum likelihood estimate of b as a function of the dynamic range r. The theory predicts the observed evolution of the modal value of mean magnitude in multiple random samples of synthetic catalogues at different r, including the bias to high b at low r and the observed trend to an asymptotic limit with no bias. The situation is more complicated for a single sample in real catalogues due to their heterogeneity, magnitude uncertainty and the true b-value being unknown. The results explain why the likelihood of large events and the associated hazard is often underestimated in small catalogues with low dynamic range, for example in some studies of volcanic and induced seismicity.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggac436</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3761-5522</orcidid><orcidid>https://orcid.org/0000-0001-5243-559X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-540X |
ispartof | Geophysical journal international, 2023-11, Vol.232 (3), p.2080-2086 |
issn | 0956-540X 1365-246X |
language | eng |
recordid | cdi_crossref_primary_10_1093_gji_ggac436 |
source | Oxford Journals Open Access Collection |
title | Accuracy and precision of frequency–size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg–Richter law b-value for earthquakes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20and%20precision%20of%20frequency%E2%80%93size%20distribution%20scaling%20parameters%20as%20a%20function%20of%20dynamic%20range%20of%20observations:%20example%20of%20the%20Gutenberg%E2%80%93Richter%20law%20b-value%20for%20earthquakes&rft.jtitle=Geophysical%20journal%20international&rft.au=Geffers,%20G-M&rft.date=2023-11-22&rft.volume=232&rft.issue=3&rft.spage=2080&rft.epage=2086&rft.pages=2080-2086&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggac436&rft_dat=%3Coup_cross%3E10.1093/gji/ggac436%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggac436&rfr_iscdi=true |