Regional lithospheric deformation beneath the East Qinling-Dabie orogenic belt based on ambient noise tomography

SUMMARY The Qinling–Dabie orogenic belt, which contain the arc-shaped Dabbashan orocline and is the world's largest belt of HP/UHP metamorphic rocks, formed by a long-term complex amalgamation process between the North China Block and the Yangtze Block. To understand the collision processes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2022-02, Vol.228 (2), p.1294-1312
Hauptverfasser: Wei, Yu, Zhang, Shuangxi, Li, Mengkui, Wu, Tengfei, Hua, Yujin, Zhang, Yu, Cai, Jianfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY The Qinling–Dabie orogenic belt, which contain the arc-shaped Dabbashan orocline and is the world's largest belt of HP/UHP metamorphic rocks, formed by a long-term complex amalgamation process between the North China Block and the Yangtze Block. To understand the collision processes and tectonic evolution, we constructed a 3-D S-wave velocity model from the surface to a depth of ∼120 km in the eastern Qinling-Dabie orogenic belt and its adjacent region by inverting 5–70 s phase velocity dispersion data of Rayleigh waves extracted from ambient noise data. Our 3-D model reveals low velocities in the middle–lower crust and high velocities in the upper mantle beneath the orogenic belt, suggesting the delamination of the lower crust. Our results support a two-stage exhumation model for the HP/UHP rocks in the study area. First-stage exhumation was caused by the slab breaking away from the subducted Yangtze Block during the Early–Middle Triassic. Partial melting of the lithospheric mantle caused by slab breakoff-related asthenospheric upwelling weakened the lithospheric mantle beneath the orogenic belt, and continued convergence of the two continental blocks led to further thickening of the lower crust. Such processes promoted lower-crust delamination, which triggered the second-stage exhumation of the HP/UHP rocks. In the Dabbashan orocline, two deep-rooted high-velocity domes, that is, Hannan–Micang and Shennong–Huangling domes, acted as a pair of indenters during the formation stage. High-velocity lower crust was observed beneath the Dabbashan orocline. In addition, our 3-D model reveals that high-velocity lithospheric mantle extends from the Sichuan Basin to the Dabbashan orocline, with a subhorizontal distribution, providing strong support for the high-velocity lower crust. We also observed the destruction of lithospheric mantle beneath the Yangtze Block; the destruction area is bounded by the North–South Gravity Lineament, suggesting that the destruction mechanism of the Yangtze Block may be similar to the North China Block.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggab393