Achieving robustness to temperature change of a NIR model for apple soluble solids content

Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food quality and safety 2023-01, Vol.7
Hauptverfasser: Jiang, Xiaogang, Yao, Jinliang, Zhu, Mingwang, Li, Bin, Liu, Yande, Ou Yang, Aiguo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Food quality and safety
container_volume 7
creator Jiang, Xiaogang
Yao, Jinliang
Zhu, Mingwang
Li, Bin
Liu, Yande
Ou Yang, Aiguo
description Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.
doi_str_mv 10.1093/fqsafe/fyad002
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_fqsafe_fyad002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/fqsafe/fyad002</oup_id><sourcerecordid>10.1093/fqsafe/fyad002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-7e3170ff9f500618b6c17cdbb35187ef10162fa0074937fcd43835f6bda3928f3</originalsourceid><addsrcrecordid>eNqFkLtrwzAYxEVpoSHN2llrByd6-KUxhD4CoYXSLl2MJH9fYrAtV5IL-e-b4HTucnfD3Q0_Qu45W3Km5Aq_g0ZY4VHXjIkrMhNSqYSnTFz_5ZPckkUIjWFpKUWqRDYjX2t7aOCn6ffUOzOG2EMINDoaoRvA6zh6oPag-z1Qh1TT1-077VwNLUXnqR6GFmhw7Wgmb-pAresj9PGO3KBuAywuPiefT48fm5dk9_a83ax3iZVcxqQAyQuGqDBjLOelyS0vbG2MzHhZAHLGc4GasSJVskBbp7KUGeam1lKJEuWcLKdf610IHrAafNNpf6w4q85wqglOdYFzGjxMAzcO_3V_AZ43aTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving robustness to temperature change of a NIR model for apple soluble solids content</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jiang, Xiaogang ; Yao, Jinliang ; Zhu, Mingwang ; Li, Bin ; Liu, Yande ; Ou Yang, Aiguo</creator><creatorcontrib>Jiang, Xiaogang ; Yao, Jinliang ; Zhu, Mingwang ; Li, Bin ; Liu, Yande ; Ou Yang, Aiguo</creatorcontrib><description>Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.</description><identifier>ISSN: 2399-1399</identifier><identifier>EISSN: 2399-1402</identifier><identifier>DOI: 10.1093/fqsafe/fyad002</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>Food quality and safety, 2023-01, Vol.7</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-7e3170ff9f500618b6c17cdbb35187ef10162fa0074937fcd43835f6bda3928f3</citedby><cites>FETCH-LOGICAL-c313t-7e3170ff9f500618b6c17cdbb35187ef10162fa0074937fcd43835f6bda3928f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiang, Xiaogang</creatorcontrib><creatorcontrib>Yao, Jinliang</creatorcontrib><creatorcontrib>Zhu, Mingwang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Liu, Yande</creatorcontrib><creatorcontrib>Ou Yang, Aiguo</creatorcontrib><title>Achieving robustness to temperature change of a NIR model for apple soluble solids content</title><title>Food quality and safety</title><description>Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.</description><issn>2399-1399</issn><issn>2399-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkLtrwzAYxEVpoSHN2llrByd6-KUxhD4CoYXSLl2MJH9fYrAtV5IL-e-b4HTucnfD3Q0_Qu45W3Km5Aq_g0ZY4VHXjIkrMhNSqYSnTFz_5ZPckkUIjWFpKUWqRDYjX2t7aOCn6ffUOzOG2EMINDoaoRvA6zh6oPag-z1Qh1TT1-077VwNLUXnqR6GFmhw7Wgmb-pAresj9PGO3KBuAywuPiefT48fm5dk9_a83ax3iZVcxqQAyQuGqDBjLOelyS0vbG2MzHhZAHLGc4GasSJVskBbp7KUGeam1lKJEuWcLKdf610IHrAafNNpf6w4q85wqglOdYFzGjxMAzcO_3V_AZ43aTo</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jiang, Xiaogang</creator><creator>Yao, Jinliang</creator><creator>Zhu, Mingwang</creator><creator>Li, Bin</creator><creator>Liu, Yande</creator><creator>Ou Yang, Aiguo</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>Achieving robustness to temperature change of a NIR model for apple soluble solids content</title><author>Jiang, Xiaogang ; Yao, Jinliang ; Zhu, Mingwang ; Li, Bin ; Liu, Yande ; Ou Yang, Aiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-7e3170ff9f500618b6c17cdbb35187ef10162fa0074937fcd43835f6bda3928f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiaogang</creatorcontrib><creatorcontrib>Yao, Jinliang</creatorcontrib><creatorcontrib>Zhu, Mingwang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Liu, Yande</creatorcontrib><creatorcontrib>Ou Yang, Aiguo</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Food quality and safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiaogang</au><au>Yao, Jinliang</au><au>Zhu, Mingwang</au><au>Li, Bin</au><au>Liu, Yande</au><au>Ou Yang, Aiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving robustness to temperature change of a NIR model for apple soluble solids content</atitle><jtitle>Food quality and safety</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>7</volume><issn>2399-1399</issn><eissn>2399-1402</eissn><abstract>Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/fqsafe/fyad002</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-1399
ispartof Food quality and safety, 2023-01, Vol.7
issn 2399-1399
2399-1402
language eng
recordid cdi_crossref_primary_10_1093_fqsafe_fyad002
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Achieving robustness to temperature change of a NIR model for apple soluble solids content
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20robustness%20to%20temperature%20change%20of%20a%20NIR%20model%20for%20apple%20soluble%20solids%20content&rft.jtitle=Food%20quality%20and%20safety&rft.au=Jiang,%20Xiaogang&rft.date=2023-01-01&rft.volume=7&rft.issn=2399-1399&rft.eissn=2399-1402&rft_id=info:doi/10.1093/fqsafe/fyad002&rft_dat=%3Coup_cross%3E10.1093/fqsafe/fyad002%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/fqsafe/fyad002&rfr_iscdi=true