Weak identification with many instruments
Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statis...
Gespeichert in:
Veröffentlicht in: | The econometrics journal 2024-06, Vol.27 (2), p.C1-C28 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C28 |
---|---|
container_issue | 2 |
container_start_page | C1 |
container_title | The econometrics journal |
container_volume | 27 |
creator | Mikusheva, Anna |
description | Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties. |
doi_str_mv | 10.1093/ectj/utae007 |
format | Article |
fullrecord | <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ectj_utae007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899132414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-11b50d0d48cd9a95aad692dad033c503422cf885f33b13d8fa5bcf695aeb729e3</originalsourceid><addsrcrecordid>eNpFj01Lw0AQhhdRsFZv_oBcBWNndpJ09yjFLyj0UtFbmOwHbjWJZLdI_70pLXqaF-bh5X2EuEa4Q9A0cyZtZtvEDmB-IiZIlcoLSe-nf1niubiIcQMAWGAxETdvjj-zYF2Xgg-GU-i77Cekj6zlbpeFLqZh247feCnOPH9Fd3W8U_H6-LBePOfL1dPL4n6ZG4ky5YhNCRZsoYzVrEtmW2lp2QKRKYHGDcYrVXqiBskqz2VjfDWCrplL7Wgqbg-9ZuhjHJyvv4fQ8rCrEeq9Zr3XrI-aI54dcGf6LsR_WGmNJEdJ-gWBgVJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak identification with many instruments</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Mikusheva, Anna</creator><creatorcontrib>Mikusheva, Anna</creatorcontrib><description>Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.</description><identifier>ISSN: 1368-4221</identifier><identifier>EISSN: 1368-423X</identifier><identifier>DOI: 10.1093/ectj/utae007</identifier><language>eng</language><ispartof>The econometrics journal, 2024-06, Vol.27 (2), p.C1-C28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-11b50d0d48cd9a95aad692dad033c503422cf885f33b13d8fa5bcf695aeb729e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Mikusheva, Anna</creatorcontrib><title>Weak identification with many instruments</title><title>The econometrics journal</title><description>Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.</description><issn>1368-4221</issn><issn>1368-423X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFj01Lw0AQhhdRsFZv_oBcBWNndpJ09yjFLyj0UtFbmOwHbjWJZLdI_70pLXqaF-bh5X2EuEa4Q9A0cyZtZtvEDmB-IiZIlcoLSe-nf1niubiIcQMAWGAxETdvjj-zYF2Xgg-GU-i77Cekj6zlbpeFLqZh247feCnOPH9Fd3W8U_H6-LBePOfL1dPL4n6ZG4ky5YhNCRZsoYzVrEtmW2lp2QKRKYHGDcYrVXqiBskqz2VjfDWCrplL7Wgqbg-9ZuhjHJyvv4fQ8rCrEeq9Zr3XrI-aI54dcGf6LsR_WGmNJEdJ-gWBgVJa</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Mikusheva, Anna</creator><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240622</creationdate><title>Weak identification with many instruments</title><author>Mikusheva, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-11b50d0d48cd9a95aad692dad033c503422cf885f33b13d8fa5bcf695aeb729e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikusheva, Anna</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>The econometrics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikusheva, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak identification with many instruments</atitle><jtitle>The econometrics journal</jtitle><date>2024-06-22</date><risdate>2024</risdate><volume>27</volume><issue>2</issue><spage>C1</spage><epage>C28</epage><pages>C1-C28</pages><issn>1368-4221</issn><eissn>1368-423X</eissn><abstract>Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.</abstract><doi>10.1093/ectj/utae007</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1368-4221 |
ispartof | The econometrics journal, 2024-06, Vol.27 (2), p.C1-C28 |
issn | 1368-4221 1368-423X |
language | eng |
recordid | cdi_crossref_primary_10_1093_ectj_utae007 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Weak identification with many instruments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20identification%20with%20many%20instruments&rft.jtitle=The%20econometrics%20journal&rft.au=Mikusheva,%20Anna&rft.date=2024-06-22&rft.volume=27&rft.issue=2&rft.spage=C1&rft.epage=C28&rft.pages=C1-C28&rft.issn=1368-4221&rft.eissn=1368-423X&rft_id=info:doi/10.1093/ectj/utae007&rft_dat=%3Ceconis_cross%3E1899132414%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |