Weak identification with many instruments

Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The econometrics journal 2024-06, Vol.27 (2), p.C1-C28
1. Verfasser: Mikusheva, Anna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C28
container_issue 2
container_start_page C1
container_title The econometrics journal
container_volume 27
creator Mikusheva, Anna
description Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.
doi_str_mv 10.1093/ectj/utae007
format Article
fullrecord <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ectj_utae007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899132414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-11b50d0d48cd9a95aad692dad033c503422cf885f33b13d8fa5bcf695aeb729e3</originalsourceid><addsrcrecordid>eNpFj01Lw0AQhhdRsFZv_oBcBWNndpJ09yjFLyj0UtFbmOwHbjWJZLdI_70pLXqaF-bh5X2EuEa4Q9A0cyZtZtvEDmB-IiZIlcoLSe-nf1niubiIcQMAWGAxETdvjj-zYF2Xgg-GU-i77Cekj6zlbpeFLqZh247feCnOPH9Fd3W8U_H6-LBePOfL1dPL4n6ZG4ky5YhNCRZsoYzVrEtmW2lp2QKRKYHGDcYrVXqiBskqz2VjfDWCrplL7Wgqbg-9ZuhjHJyvv4fQ8rCrEeq9Zr3XrI-aI54dcGf6LsR_WGmNJEdJ-gWBgVJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak identification with many instruments</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Mikusheva, Anna</creator><creatorcontrib>Mikusheva, Anna</creatorcontrib><description>Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.</description><identifier>ISSN: 1368-4221</identifier><identifier>EISSN: 1368-423X</identifier><identifier>DOI: 10.1093/ectj/utae007</identifier><language>eng</language><ispartof>The econometrics journal, 2024-06, Vol.27 (2), p.C1-C28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-11b50d0d48cd9a95aad692dad033c503422cf885f33b13d8fa5bcf695aeb729e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Mikusheva, Anna</creatorcontrib><title>Weak identification with many instruments</title><title>The econometrics journal</title><description>Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.</description><issn>1368-4221</issn><issn>1368-423X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFj01Lw0AQhhdRsFZv_oBcBWNndpJ09yjFLyj0UtFbmOwHbjWJZLdI_70pLXqaF-bh5X2EuEa4Q9A0cyZtZtvEDmB-IiZIlcoLSe-nf1niubiIcQMAWGAxETdvjj-zYF2Xgg-GU-i77Cekj6zlbpeFLqZh247feCnOPH9Fd3W8U_H6-LBePOfL1dPL4n6ZG4ky5YhNCRZsoYzVrEtmW2lp2QKRKYHGDcYrVXqiBskqz2VjfDWCrplL7Wgqbg-9ZuhjHJyvv4fQ8rCrEeq9Zr3XrI-aI54dcGf6LsR_WGmNJEdJ-gWBgVJa</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Mikusheva, Anna</creator><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240622</creationdate><title>Weak identification with many instruments</title><author>Mikusheva, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-11b50d0d48cd9a95aad692dad033c503422cf885f33b13d8fa5bcf695aeb729e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikusheva, Anna</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>The econometrics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikusheva, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak identification with many instruments</atitle><jtitle>The econometrics journal</jtitle><date>2024-06-22</date><risdate>2024</risdate><volume>27</volume><issue>2</issue><spage>C1</spage><epage>C28</epage><pages>C1-C28</pages><issn>1368-4221</issn><eissn>1368-423X</eissn><abstract>Linear instrumental variable regressions are widely used to estimate causal effects. Many instruments arise from the use of ‘technical’ instruments and more recently from the empirical strategy of ‘judge design’. This paper surveys and summarises ideas from recent literature on estimation and statistical inferences with many instruments for a single endogenous regressor. We discuss how to assess the strength of the instruments and how to conduct weak identification robust inference under heteroskedasticity. We establish new results for a jack-knifed version of the Lagrange Multiplier test statistic. Furthermore, we extend the weak identification robust tests to settings with both many exogenous regressors and many instruments. We propose a test that properly partials out many exogenous regressors while preserving the re-centring property of the jack-knife. The proposed tests have correct size and good power properties.</abstract><doi>10.1093/ectj/utae007</doi></addata></record>
fulltext fulltext
identifier ISSN: 1368-4221
ispartof The econometrics journal, 2024-06, Vol.27 (2), p.C1-C28
issn 1368-4221
1368-423X
language eng
recordid cdi_crossref_primary_10_1093_ectj_utae007
source Oxford University Press Journals All Titles (1996-Current)
title Weak identification with many instruments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20identification%20with%20many%20instruments&rft.jtitle=The%20econometrics%20journal&rft.au=Mikusheva,%20Anna&rft.date=2024-06-22&rft.volume=27&rft.issue=2&rft.spage=C1&rft.epage=C28&rft.pages=C1-C28&rft.issn=1368-4221&rft.eissn=1368-423X&rft_id=info:doi/10.1093/ectj/utae007&rft_dat=%3Ceconis_cross%3E1899132414%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true