A persistent homological analysis of network data flow malfunctions
Persistent homology has recently emerged as a powerful technique in topological data analysis for analysing the emergence and disappearance of topological features throughout a filtered space, shown via persistence diagrams. In this article, we develop an application of ideas from the theory of pers...
Gespeichert in:
Veröffentlicht in: | Journal of complex networks 2017-12, Vol.5 (6), p.884-892 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 892 |
---|---|
container_issue | 6 |
container_start_page | 884 |
container_title | Journal of complex networks |
container_volume | 5 |
creator | Scoville, Nicholas A Yegnesh, Karthik |
description | Persistent homology has recently emerged as a powerful technique in topological data analysis for analysing the emergence and disappearance of topological features throughout a filtered space, shown via persistence diagrams. In this article, we develop an application of ideas from the theory of persistent homology and persistence diagrams to the study of data flow malfunctions in networks with a certain hierarchical structure. In particular, we formulate an algorithmic construction of persistence diagrams that parameterize network data flow errors, thus enabling novel applications of statistical methods that are traditionally used to assess the stability of persistence diagrams corresponding to homological data to the study of data flow malfunctions. We conclude with an application to network packet delivery systems. |
doi_str_mv | 10.1093/comnet/cnx038 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comnet_cnx038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_comnet_cnx038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-e8d89a42d513fd29f7ba127fa87e22787fd1005601f796d85b4d2639e47d17e73</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWGqX7vMCY78vmZkkyzL4BwU3uh7S_OhoJimTSO3bWxnp6h64cBaHkFuEOwTF1yaN0ZW1iT_A5QVZMGiwQs7U5ZkRrskq508AQNa0DNsF6TZ076Y85OJioR9pTCG9D0YHqqMOx9NBk6cn8yFNX9TqoqkP6UBHHfx3NGVIMd-QK69Ddqv_XZK3h_vX7qnavjw-d5ttZRgXpXLSSqVrZhvk3jLlxU4jE15L4RgTUniLAE0L6IVqrWx2tWUtV64WFoUTfEmq2WumlPPkfL-fhlFPxx6h_4vQzxH6OQL_BT2KUl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A persistent homological analysis of network data flow malfunctions</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Scoville, Nicholas A ; Yegnesh, Karthik</creator><creatorcontrib>Scoville, Nicholas A ; Yegnesh, Karthik</creatorcontrib><description>Persistent homology has recently emerged as a powerful technique in topological data analysis for analysing the emergence and disappearance of topological features throughout a filtered space, shown via persistence diagrams. In this article, we develop an application of ideas from the theory of persistent homology and persistence diagrams to the study of data flow malfunctions in networks with a certain hierarchical structure. In particular, we formulate an algorithmic construction of persistence diagrams that parameterize network data flow errors, thus enabling novel applications of statistical methods that are traditionally used to assess the stability of persistence diagrams corresponding to homological data to the study of data flow malfunctions. We conclude with an application to network packet delivery systems.</description><identifier>ISSN: 2051-1310</identifier><identifier>EISSN: 2051-1329</identifier><identifier>DOI: 10.1093/comnet/cnx038</identifier><language>eng</language><ispartof>Journal of complex networks, 2017-12, Vol.5 (6), p.884-892</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-e8d89a42d513fd29f7ba127fa87e22787fd1005601f796d85b4d2639e47d17e73</citedby><cites>FETCH-LOGICAL-c237t-e8d89a42d513fd29f7ba127fa87e22787fd1005601f796d85b4d2639e47d17e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Scoville, Nicholas A</creatorcontrib><creatorcontrib>Yegnesh, Karthik</creatorcontrib><title>A persistent homological analysis of network data flow malfunctions</title><title>Journal of complex networks</title><description>Persistent homology has recently emerged as a powerful technique in topological data analysis for analysing the emergence and disappearance of topological features throughout a filtered space, shown via persistence diagrams. In this article, we develop an application of ideas from the theory of persistent homology and persistence diagrams to the study of data flow malfunctions in networks with a certain hierarchical structure. In particular, we formulate an algorithmic construction of persistence diagrams that parameterize network data flow errors, thus enabling novel applications of statistical methods that are traditionally used to assess the stability of persistence diagrams corresponding to homological data to the study of data flow malfunctions. We conclude with an application to network packet delivery systems.</description><issn>2051-1310</issn><issn>2051-1329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWGqX7vMCY78vmZkkyzL4BwU3uh7S_OhoJimTSO3bWxnp6h64cBaHkFuEOwTF1yaN0ZW1iT_A5QVZMGiwQs7U5ZkRrskq508AQNa0DNsF6TZ076Y85OJioR9pTCG9D0YHqqMOx9NBk6cn8yFNX9TqoqkP6UBHHfx3NGVIMd-QK69Ddqv_XZK3h_vX7qnavjw-d5ttZRgXpXLSSqVrZhvk3jLlxU4jE15L4RgTUniLAE0L6IVqrWx2tWUtV64WFoUTfEmq2WumlPPkfL-fhlFPxx6h_4vQzxH6OQL_BT2KUl8</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Scoville, Nicholas A</creator><creator>Yegnesh, Karthik</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>A persistent homological analysis of network data flow malfunctions</title><author>Scoville, Nicholas A ; Yegnesh, Karthik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-e8d89a42d513fd29f7ba127fa87e22787fd1005601f796d85b4d2639e47d17e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Scoville, Nicholas A</creatorcontrib><creatorcontrib>Yegnesh, Karthik</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of complex networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scoville, Nicholas A</au><au>Yegnesh, Karthik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A persistent homological analysis of network data flow malfunctions</atitle><jtitle>Journal of complex networks</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>5</volume><issue>6</issue><spage>884</spage><epage>892</epage><pages>884-892</pages><issn>2051-1310</issn><eissn>2051-1329</eissn><abstract>Persistent homology has recently emerged as a powerful technique in topological data analysis for analysing the emergence and disappearance of topological features throughout a filtered space, shown via persistence diagrams. In this article, we develop an application of ideas from the theory of persistent homology and persistence diagrams to the study of data flow malfunctions in networks with a certain hierarchical structure. In particular, we formulate an algorithmic construction of persistence diagrams that parameterize network data flow errors, thus enabling novel applications of statistical methods that are traditionally used to assess the stability of persistence diagrams corresponding to homological data to the study of data flow malfunctions. We conclude with an application to network packet delivery systems.</abstract><doi>10.1093/comnet/cnx038</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-1310 |
ispartof | Journal of complex networks, 2017-12, Vol.5 (6), p.884-892 |
issn | 2051-1310 2051-1329 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comnet_cnx038 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | A persistent homological analysis of network data flow malfunctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20persistent%20homological%20analysis%20of%20network%20data%20flow%20malfunctions&rft.jtitle=Journal%20of%20complex%20networks&rft.au=Scoville,%20Nicholas%20A&rft.date=2017-12-01&rft.volume=5&rft.issue=6&rft.spage=884&rft.epage=892&rft.pages=884-892&rft.issn=2051-1310&rft.eissn=2051-1329&rft_id=info:doi/10.1093/comnet/cnx038&rft_dat=%3Ccrossref%3E10_1093_comnet_cnx038%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |