The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings

Abstract Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of complex networks 2021-03, Vol.10 (2)
Hauptverfasser: Campedelli, Gian Maria, Layne, Janet, Herzoff, Jack, Serra, Edoardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of complex networks
container_volume 10
creator Campedelli, Gian Maria
Layne, Janet
Herzoff, Jack
Serra, Edoardo
description Abstract Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.
doi_str_mv 10.1093/comnet/cnac008
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comnet_cnac008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comnet/cnac008</oup_id><sourcerecordid>10.1093/comnet/cnac008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvnnP1sO0k--1Nil9Q8FLPyzQ72Y3uJkuSiv73trR49TRv4L3H48fYrYClgDpdKTdaiitlUQFUF2wmIReJSGV9-acFXLNFCB8AIGReSFHM2Oe2J96RGyl6o3DgoceJAneafxk3kFV0zydPrVHR2I6jbTl9TwMae3wjee-8CZG7iTxG42zgsfdu3_W88zj1nMYdte3BHG7YlcYh0OJ85-z96XG7fkk2b8-v64dNoiSkMdFSVVRRS3iYWWtRSF3kuaBCpCjrUkOmM10gVJTjLmsLKDOCNkMtyizPsU7nbHnqVd6F4Ek3kzcj-p9GQHOk1ZxoNWdah8DdKeD203_eX7WdcMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Campedelli, Gian Maria ; Layne, Janet ; Herzoff, Jack ; Serra, Edoardo</creator><contributor>Piccardi, Carlo</contributor><creatorcontrib>Campedelli, Gian Maria ; Layne, Janet ; Herzoff, Jack ; Serra, Edoardo ; Piccardi, Carlo</creatorcontrib><description>Abstract Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.</description><identifier>ISSN: 2051-1310</identifier><identifier>EISSN: 2051-1329</identifier><identifier>DOI: 10.1093/comnet/cnac008</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of complex networks, 2021-03, Vol.10 (2)</ispartof><rights>The authors 2022. Published by Oxford University Press. All rights reserved. 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</citedby><cites>FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</cites><orcidid>0000-0002-7734-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Piccardi, Carlo</contributor><creatorcontrib>Campedelli, Gian Maria</creatorcontrib><creatorcontrib>Layne, Janet</creatorcontrib><creatorcontrib>Herzoff, Jack</creatorcontrib><creatorcontrib>Serra, Edoardo</creatorcontrib><title>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</title><title>Journal of complex networks</title><description>Abstract Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.</description><issn>2051-1310</issn><issn>2051-1329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWGqvnnP1sO0k--1Nil9Q8FLPyzQ72Y3uJkuSiv73trR49TRv4L3H48fYrYClgDpdKTdaiitlUQFUF2wmIReJSGV9-acFXLNFCB8AIGReSFHM2Oe2J96RGyl6o3DgoceJAneafxk3kFV0zydPrVHR2I6jbTl9TwMae3wjee-8CZG7iTxG42zgsfdu3_W88zj1nMYdte3BHG7YlcYh0OJ85-z96XG7fkk2b8-v64dNoiSkMdFSVVRRS3iYWWtRSF3kuaBCpCjrUkOmM10gVJTjLmsLKDOCNkMtyizPsU7nbHnqVd6F4Ek3kzcj-p9GQHOk1ZxoNWdah8DdKeD203_eX7WdcMc</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Campedelli, Gian Maria</creator><creator>Layne, Janet</creator><creator>Herzoff, Jack</creator><creator>Serra, Edoardo</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7734-7956</orcidid></search><sort><creationdate>20210303</creationdate><title>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</title><author>Campedelli, Gian Maria ; Layne, Janet ; Herzoff, Jack ; Serra, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Campedelli, Gian Maria</creatorcontrib><creatorcontrib>Layne, Janet</creatorcontrib><creatorcontrib>Herzoff, Jack</creatorcontrib><creatorcontrib>Serra, Edoardo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of complex networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campedelli, Gian Maria</au><au>Layne, Janet</au><au>Herzoff, Jack</au><au>Serra, Edoardo</au><au>Piccardi, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</atitle><jtitle>Journal of complex networks</jtitle><date>2021-03-03</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><issn>2051-1310</issn><eissn>2051-1329</eissn><abstract>Abstract Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.</abstract><pub>Oxford University Press</pub><doi>10.1093/comnet/cnac008</doi><orcidid>https://orcid.org/0000-0002-7734-7956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-1310
ispartof Journal of complex networks, 2021-03, Vol.10 (2)
issn 2051-1310
2051-1329
language eng
recordid cdi_crossref_primary_10_1093_comnet_cnac008
source Oxford University Press Journals All Titles (1996-Current)
title The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometrical%20shapes%20of%20violence:%20predicting%20and%20explaining%20terrorist%20operations%20through%20graph%20embeddings&rft.jtitle=Journal%20of%20complex%20networks&rft.au=Campedelli,%20Gian%20Maria&rft.date=2021-03-03&rft.volume=10&rft.issue=2&rft.issn=2051-1310&rft.eissn=2051-1329&rft_id=info:doi/10.1093/comnet/cnac008&rft_dat=%3Coup_cross%3E10.1093/comnet/cnac008%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comnet/cnac008&rfr_iscdi=true