The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings
Abstract Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational m...
Gespeichert in:
Veröffentlicht in: | Journal of complex networks 2021-03, Vol.10 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of complex networks |
container_volume | 10 |
creator | Campedelli, Gian Maria Layne, Janet Herzoff, Jack Serra, Edoardo |
description | Abstract
Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features. |
doi_str_mv | 10.1093/comnet/cnac008 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comnet_cnac008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comnet/cnac008</oup_id><sourcerecordid>10.1093/comnet/cnac008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvnnP1sO0k--1Nil9Q8FLPyzQ72Y3uJkuSiv73trR49TRv4L3H48fYrYClgDpdKTdaiitlUQFUF2wmIReJSGV9-acFXLNFCB8AIGReSFHM2Oe2J96RGyl6o3DgoceJAneafxk3kFV0zydPrVHR2I6jbTl9TwMae3wjee-8CZG7iTxG42zgsfdu3_W88zj1nMYdte3BHG7YlcYh0OJ85-z96XG7fkk2b8-v64dNoiSkMdFSVVRRS3iYWWtRSF3kuaBCpCjrUkOmM10gVJTjLmsLKDOCNkMtyizPsU7nbHnqVd6F4Ek3kzcj-p9GQHOk1ZxoNWdah8DdKeD203_eX7WdcMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Campedelli, Gian Maria ; Layne, Janet ; Herzoff, Jack ; Serra, Edoardo</creator><contributor>Piccardi, Carlo</contributor><creatorcontrib>Campedelli, Gian Maria ; Layne, Janet ; Herzoff, Jack ; Serra, Edoardo ; Piccardi, Carlo</creatorcontrib><description>Abstract
Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.</description><identifier>ISSN: 2051-1310</identifier><identifier>EISSN: 2051-1329</identifier><identifier>DOI: 10.1093/comnet/cnac008</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of complex networks, 2021-03, Vol.10 (2)</ispartof><rights>The authors 2022. Published by Oxford University Press. All rights reserved. 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</citedby><cites>FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</cites><orcidid>0000-0002-7734-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Piccardi, Carlo</contributor><creatorcontrib>Campedelli, Gian Maria</creatorcontrib><creatorcontrib>Layne, Janet</creatorcontrib><creatorcontrib>Herzoff, Jack</creatorcontrib><creatorcontrib>Serra, Edoardo</creatorcontrib><title>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</title><title>Journal of complex networks</title><description>Abstract
Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.</description><issn>2051-1310</issn><issn>2051-1329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWGqvnnP1sO0k--1Nil9Q8FLPyzQ72Y3uJkuSiv73trR49TRv4L3H48fYrYClgDpdKTdaiitlUQFUF2wmIReJSGV9-acFXLNFCB8AIGReSFHM2Oe2J96RGyl6o3DgoceJAneafxk3kFV0zydPrVHR2I6jbTl9TwMae3wjee-8CZG7iTxG42zgsfdu3_W88zj1nMYdte3BHG7YlcYh0OJ85-z96XG7fkk2b8-v64dNoiSkMdFSVVRRS3iYWWtRSF3kuaBCpCjrUkOmM10gVJTjLmsLKDOCNkMtyizPsU7nbHnqVd6F4Ek3kzcj-p9GQHOk1ZxoNWdah8DdKeD203_eX7WdcMc</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Campedelli, Gian Maria</creator><creator>Layne, Janet</creator><creator>Herzoff, Jack</creator><creator>Serra, Edoardo</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7734-7956</orcidid></search><sort><creationdate>20210303</creationdate><title>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</title><author>Campedelli, Gian Maria ; Layne, Janet ; Herzoff, Jack ; Serra, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-f2c8e8edea0129f162f6551e613a297f04f4f6a08e5ab4d6074e0d4af17455a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Campedelli, Gian Maria</creatorcontrib><creatorcontrib>Layne, Janet</creatorcontrib><creatorcontrib>Herzoff, Jack</creatorcontrib><creatorcontrib>Serra, Edoardo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of complex networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campedelli, Gian Maria</au><au>Layne, Janet</au><au>Herzoff, Jack</au><au>Serra, Edoardo</au><au>Piccardi, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings</atitle><jtitle>Journal of complex networks</jtitle><date>2021-03-03</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><issn>2051-1310</issn><eissn>2051-1329</eissn><abstract>Abstract
Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objectives. We here show that organizations can also be distinguished by network representations of their operations. We provide evidence in this direction in the frame of a computational methodology organized in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the Taliban in the 2013–2018 period. First, we present $\textsf{LabeledSparseStruct}$, a graph embedding approach, to predict the group associated with each operational meta-graph. Second, we introduce $\textsf{SparseStructExplanation}$, an algorithmic explainer based on $\textsf{LabeledSparseStruct}$, that disentangles characterizing features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups can be discriminated according to the structure and topology of their operational meta-graphs, and that each organization is characterized by the recurrence of specific dyadic interactions among event features.</abstract><pub>Oxford University Press</pub><doi>10.1093/comnet/cnac008</doi><orcidid>https://orcid.org/0000-0002-7734-7956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-1310 |
ispartof | Journal of complex networks, 2021-03, Vol.10 (2) |
issn | 2051-1310 2051-1329 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comnet_cnac008 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | The geometrical shapes of violence: predicting and explaining terrorist operations through graph embeddings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometrical%20shapes%20of%20violence:%20predicting%20and%20explaining%20terrorist%20operations%20through%20graph%20embeddings&rft.jtitle=Journal%20of%20complex%20networks&rft.au=Campedelli,%20Gian%20Maria&rft.date=2021-03-03&rft.volume=10&rft.issue=2&rft.issn=2051-1310&rft.eissn=2051-1329&rft_id=info:doi/10.1093/comnet/cnac008&rft_dat=%3Coup_cross%3E10.1093/comnet/cnac008%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comnet/cnac008&rfr_iscdi=true |