Bayesian inference of network structure from unreliable data
Abstract Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible...
Gespeichert in:
Veröffentlicht in: | Journal of complex networks 2020-12, Vol.8 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of complex networks |
container_volume | 8 |
creator | Young, Jean-Gabriel Cantwell, George T Newman, M E J |
description | Abstract
Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available. |
doi_str_mv | 10.1093/comnet/cnaa046 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comnet_cnaa046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comnet/cnaa046</oup_id><sourcerecordid>10.1093/comnet/cnaa046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</originalsourceid><addsrcrecordid>eNqFj01LAzEURYMoWGq3rrN1Me3L5yTgRotWoeBG18NrkoHRmaQkM0j_vZUWt67uXdxz4RByy2DJwIqVS0MM48pFRJD6gsw4KFYxwe3lX2dwTRalfAIA40pzpmfk_hEPoXQYaRfbkEN0gaaWHr--U_6iZcyTG6ccaJvTQKeYQ9_hrg_U44g35KrFvoTFOefk4_npff1Sbd82r-uHbeUEE2OleV1Lp0AbaRzW1ls0ijsHO1MHDMIbb7UCzgwIrSVHxbw0iMo7qZzlYk6Wp1-XUyk5tM0-dwPmQ8Og-dVvTvrNWf8I3J2ANO3_2_4A6s1d6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian inference of network structure from unreliable data</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Young, Jean-Gabriel ; Cantwell, George T ; Newman, M E J</creator><contributor>Peixoto, Tiago P</contributor><creatorcontrib>Young, Jean-Gabriel ; Cantwell, George T ; Newman, M E J ; Peixoto, Tiago P</creatorcontrib><description>Abstract
Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.</description><identifier>ISSN: 2051-1310</identifier><identifier>EISSN: 2051-1329</identifier><identifier>DOI: 10.1093/comnet/cnaa046</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of complex networks, 2020-12, Vol.8 (6)</ispartof><rights>The authors 2020. Published by Oxford University Press. All rights reserved. 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</citedby><cites>FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><contributor>Peixoto, Tiago P</contributor><creatorcontrib>Young, Jean-Gabriel</creatorcontrib><creatorcontrib>Cantwell, George T</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><title>Bayesian inference of network structure from unreliable data</title><title>Journal of complex networks</title><description>Abstract
Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.</description><issn>2051-1310</issn><issn>2051-1329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFj01LAzEURYMoWGq3rrN1Me3L5yTgRotWoeBG18NrkoHRmaQkM0j_vZUWt67uXdxz4RByy2DJwIqVS0MM48pFRJD6gsw4KFYxwe3lX2dwTRalfAIA40pzpmfk_hEPoXQYaRfbkEN0gaaWHr--U_6iZcyTG6ccaJvTQKeYQ9_hrg_U44g35KrFvoTFOefk4_npff1Sbd82r-uHbeUEE2OleV1Lp0AbaRzW1ls0ijsHO1MHDMIbb7UCzgwIrSVHxbw0iMo7qZzlYk6Wp1-XUyk5tM0-dwPmQ8Og-dVvTvrNWf8I3J2ANO3_2_4A6s1d6w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Young, Jean-Gabriel</creator><creator>Cantwell, George T</creator><creator>Newman, M E J</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Bayesian inference of network structure from unreliable data</title><author>Young, Jean-Gabriel ; Cantwell, George T ; Newman, M E J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Young, Jean-Gabriel</creatorcontrib><creatorcontrib>Cantwell, George T</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Journal of complex networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jean-Gabriel</au><au>Cantwell, George T</au><au>Newman, M E J</au><au>Peixoto, Tiago P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference of network structure from unreliable data</atitle><jtitle>Journal of complex networks</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><issn>2051-1310</issn><eissn>2051-1329</eissn><abstract>Abstract
Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.</abstract><pub>Oxford University Press</pub><doi>10.1093/comnet/cnaa046</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-1310 |
ispartof | Journal of complex networks, 2020-12, Vol.8 (6) |
issn | 2051-1310 2051-1329 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comnet_cnaa046 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Bayesian inference of network structure from unreliable data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20of%20network%20structure%20from%20unreliable%20data&rft.jtitle=Journal%20of%20complex%20networks&rft.au=Young,%20Jean-Gabriel&rft.date=2020-12-01&rft.volume=8&rft.issue=6&rft.issn=2051-1310&rft.eissn=2051-1329&rft_id=info:doi/10.1093/comnet/cnaa046&rft_dat=%3Coup_cross%3E10.1093/comnet/cnaa046%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comnet/cnaa046&rfr_iscdi=true |