Bayesian inference of network structure from unreliable data

Abstract Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of complex networks 2020-12, Vol.8 (6)
Hauptverfasser: Young, Jean-Gabriel, Cantwell, George T, Newman, M E J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of complex networks
container_volume 8
creator Young, Jean-Gabriel
Cantwell, George T
Newman, M E J
description Abstract Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.
doi_str_mv 10.1093/comnet/cnaa046
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comnet_cnaa046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comnet/cnaa046</oup_id><sourcerecordid>10.1093/comnet/cnaa046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</originalsourceid><addsrcrecordid>eNqFj01LAzEURYMoWGq3rrN1Me3L5yTgRotWoeBG18NrkoHRmaQkM0j_vZUWt67uXdxz4RByy2DJwIqVS0MM48pFRJD6gsw4KFYxwe3lX2dwTRalfAIA40pzpmfk_hEPoXQYaRfbkEN0gaaWHr--U_6iZcyTG6ccaJvTQKeYQ9_hrg_U44g35KrFvoTFOefk4_npff1Sbd82r-uHbeUEE2OleV1Lp0AbaRzW1ls0ijsHO1MHDMIbb7UCzgwIrSVHxbw0iMo7qZzlYk6Wp1-XUyk5tM0-dwPmQ8Og-dVvTvrNWf8I3J2ANO3_2_4A6s1d6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian inference of network structure from unreliable data</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Young, Jean-Gabriel ; Cantwell, George T ; Newman, M E J</creator><contributor>Peixoto, Tiago P</contributor><creatorcontrib>Young, Jean-Gabriel ; Cantwell, George T ; Newman, M E J ; Peixoto, Tiago P</creatorcontrib><description>Abstract Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.</description><identifier>ISSN: 2051-1310</identifier><identifier>EISSN: 2051-1329</identifier><identifier>DOI: 10.1093/comnet/cnaa046</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of complex networks, 2020-12, Vol.8 (6)</ispartof><rights>The authors 2020. Published by Oxford University Press. All rights reserved. 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</citedby><cites>FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><contributor>Peixoto, Tiago P</contributor><creatorcontrib>Young, Jean-Gabriel</creatorcontrib><creatorcontrib>Cantwell, George T</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><title>Bayesian inference of network structure from unreliable data</title><title>Journal of complex networks</title><description>Abstract Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.</description><issn>2051-1310</issn><issn>2051-1329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFj01LAzEURYMoWGq3rrN1Me3L5yTgRotWoeBG18NrkoHRmaQkM0j_vZUWt67uXdxz4RByy2DJwIqVS0MM48pFRJD6gsw4KFYxwe3lX2dwTRalfAIA40pzpmfk_hEPoXQYaRfbkEN0gaaWHr--U_6iZcyTG6ccaJvTQKeYQ9_hrg_U44g35KrFvoTFOefk4_npff1Sbd82r-uHbeUEE2OleV1Lp0AbaRzW1ls0ijsHO1MHDMIbb7UCzgwIrSVHxbw0iMo7qZzlYk6Wp1-XUyk5tM0-dwPmQ8Og-dVvTvrNWf8I3J2ANO3_2_4A6s1d6w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Young, Jean-Gabriel</creator><creator>Cantwell, George T</creator><creator>Newman, M E J</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Bayesian inference of network structure from unreliable data</title><author>Young, Jean-Gabriel ; Cantwell, George T ; Newman, M E J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-62774c506848ca79d9a852cc0b87eae3d8d9650218036642a51d48aa5dc45c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Young, Jean-Gabriel</creatorcontrib><creatorcontrib>Cantwell, George T</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Journal of complex networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jean-Gabriel</au><au>Cantwell, George T</au><au>Newman, M E J</au><au>Peixoto, Tiago P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference of network structure from unreliable data</atitle><jtitle>Journal of complex networks</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><issn>2051-1310</issn><eissn>2051-1329</eissn><abstract>Abstract Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.</abstract><pub>Oxford University Press</pub><doi>10.1093/comnet/cnaa046</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-1310
ispartof Journal of complex networks, 2020-12, Vol.8 (6)
issn 2051-1310
2051-1329
language eng
recordid cdi_crossref_primary_10_1093_comnet_cnaa046
source Oxford University Press Journals All Titles (1996-Current)
title Bayesian inference of network structure from unreliable data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20of%20network%20structure%20from%20unreliable%20data&rft.jtitle=Journal%20of%20complex%20networks&rft.au=Young,%20Jean-Gabriel&rft.date=2020-12-01&rft.volume=8&rft.issue=6&rft.issn=2051-1310&rft.eissn=2051-1329&rft_id=info:doi/10.1093/comnet/cnaa046&rft_dat=%3Coup_cross%3E10.1093/comnet/cnaa046%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comnet/cnaa046&rfr_iscdi=true