Anonymization of face images with Contrastive Learning
Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-...
Gespeichert in:
Veröffentlicht in: | Computer journal 2024-06, Vol.67 (5), p.1910-1919 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1919 |
---|---|
container_issue | 5 |
container_start_page | 1910 |
container_title | Computer journal |
container_volume | 67 |
creator | Xu, Xintong Cui, Run Huang, Chanying Yan, Kedong |
description | Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method. |
doi_str_mv | 10.1093/comjnl/bxad111 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxad111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_comjnl_bxad111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-ca2c653481add8f5e24e7d0f1da93f20b8403653a276cffec3a39b663d4b4afe3</originalsourceid><addsrcrecordid>eNotz8tOwzAUBFALgUQobFn7B9JeP-okyyriJUViA-voxo_iqrGRbQHl6ylqV7MZjeYQcs9gyaATKx3nXdivph80jLELUjGpoOagmktSATCopeJwTW5y3gEAh05VRG1CDIfZ_2LxMdDoqENtqZ9xazP99uWD9jGUhLn4L0sHiyn4sL0lVw732d6dc0HeHx_e-ud6eH166TdDrRmXpdbItVoL2TI0pnVry6VtDDhmsBOOw9RKEMcC8kZp56wWKLpJKWHkJNFZsSDL065OMedk3fiZjt_SYWQw_qvHk3o8q8UffQtONw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anonymization of face images with Contrastive Learning</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Xu, Xintong ; Cui, Run ; Huang, Chanying ; Yan, Kedong</creator><creatorcontrib>Xu, Xintong ; Cui, Run ; Huang, Chanying ; Yan, Kedong</creatorcontrib><description>Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxad111</identifier><language>eng</language><ispartof>Computer journal, 2024-06, Vol.67 (5), p.1910-1919</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-ca2c653481add8f5e24e7d0f1da93f20b8403653a276cffec3a39b663d4b4afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Xintong</creatorcontrib><creatorcontrib>Cui, Run</creatorcontrib><creatorcontrib>Huang, Chanying</creatorcontrib><creatorcontrib>Yan, Kedong</creatorcontrib><title>Anonymization of face images with Contrastive Learning</title><title>Computer journal</title><description>Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz8tOwzAUBFALgUQobFn7B9JeP-okyyriJUViA-voxo_iqrGRbQHl6ylqV7MZjeYQcs9gyaATKx3nXdivph80jLELUjGpoOagmktSATCopeJwTW5y3gEAh05VRG1CDIfZ_2LxMdDoqENtqZ9xazP99uWD9jGUhLn4L0sHiyn4sL0lVw732d6dc0HeHx_e-ud6eH166TdDrRmXpdbItVoL2TI0pnVry6VtDDhmsBOOw9RKEMcC8kZp56wWKLpJKWHkJNFZsSDL065OMedk3fiZjt_SYWQw_qvHk3o8q8UffQtONw</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Xu, Xintong</creator><creator>Cui, Run</creator><creator>Huang, Chanying</creator><creator>Yan, Kedong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240622</creationdate><title>Anonymization of face images with Contrastive Learning</title><author>Xu, Xintong ; Cui, Run ; Huang, Chanying ; Yan, Kedong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-ca2c653481add8f5e24e7d0f1da93f20b8403653a276cffec3a39b663d4b4afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xintong</creatorcontrib><creatorcontrib>Cui, Run</creatorcontrib><creatorcontrib>Huang, Chanying</creatorcontrib><creatorcontrib>Yan, Kedong</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xintong</au><au>Cui, Run</au><au>Huang, Chanying</au><au>Yan, Kedong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anonymization of face images with Contrastive Learning</atitle><jtitle>Computer journal</jtitle><date>2024-06-22</date><risdate>2024</risdate><volume>67</volume><issue>5</issue><spage>1910</spage><epage>1919</epage><pages>1910-1919</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.</abstract><doi>10.1093/comjnl/bxad111</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4620 |
ispartof | Computer journal, 2024-06, Vol.67 (5), p.1910-1919 |
issn | 0010-4620 1460-2067 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comjnl_bxad111 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Anonymization of face images with Contrastive Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anonymization%20of%20face%20images%20with%20Contrastive%20Learning&rft.jtitle=Computer%20journal&rft.au=Xu,%20Xintong&rft.date=2024-06-22&rft.volume=67&rft.issue=5&rft.spage=1910&rft.epage=1919&rft.pages=1910-1919&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxad111&rft_dat=%3Ccrossref%3E10_1093_comjnl_bxad111%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |