Anonymization of face images with Contrastive Learning

Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer journal 2024-06, Vol.67 (5), p.1910-1919
Hauptverfasser: Xu, Xintong, Cui, Run, Huang, Chanying, Yan, Kedong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1919
container_issue 5
container_start_page 1910
container_title Computer journal
container_volume 67
creator Xu, Xintong
Cui, Run
Huang, Chanying
Yan, Kedong
description Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.
doi_str_mv 10.1093/comjnl/bxad111
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxad111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_comjnl_bxad111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-ca2c653481add8f5e24e7d0f1da93f20b8403653a276cffec3a39b663d4b4afe3</originalsourceid><addsrcrecordid>eNotz8tOwzAUBFALgUQobFn7B9JeP-okyyriJUViA-voxo_iqrGRbQHl6ylqV7MZjeYQcs9gyaATKx3nXdivph80jLELUjGpoOagmktSATCopeJwTW5y3gEAh05VRG1CDIfZ_2LxMdDoqENtqZ9xazP99uWD9jGUhLn4L0sHiyn4sL0lVw732d6dc0HeHx_e-ud6eH166TdDrRmXpdbItVoL2TI0pnVry6VtDDhmsBOOw9RKEMcC8kZp56wWKLpJKWHkJNFZsSDL065OMedk3fiZjt_SYWQw_qvHk3o8q8UffQtONw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anonymization of face images with Contrastive Learning</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Xu, Xintong ; Cui, Run ; Huang, Chanying ; Yan, Kedong</creator><creatorcontrib>Xu, Xintong ; Cui, Run ; Huang, Chanying ; Yan, Kedong</creatorcontrib><description>Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxad111</identifier><language>eng</language><ispartof>Computer journal, 2024-06, Vol.67 (5), p.1910-1919</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-ca2c653481add8f5e24e7d0f1da93f20b8403653a276cffec3a39b663d4b4afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Xintong</creatorcontrib><creatorcontrib>Cui, Run</creatorcontrib><creatorcontrib>Huang, Chanying</creatorcontrib><creatorcontrib>Yan, Kedong</creatorcontrib><title>Anonymization of face images with Contrastive Learning</title><title>Computer journal</title><description>Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz8tOwzAUBFALgUQobFn7B9JeP-okyyriJUViA-voxo_iqrGRbQHl6ylqV7MZjeYQcs9gyaATKx3nXdivph80jLELUjGpoOagmktSATCopeJwTW5y3gEAh05VRG1CDIfZ_2LxMdDoqENtqZ9xazP99uWD9jGUhLn4L0sHiyn4sL0lVw732d6dc0HeHx_e-ud6eH166TdDrRmXpdbItVoL2TI0pnVry6VtDDhmsBOOw9RKEMcC8kZp56wWKLpJKWHkJNFZsSDL065OMedk3fiZjt_SYWQw_qvHk3o8q8UffQtONw</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Xu, Xintong</creator><creator>Cui, Run</creator><creator>Huang, Chanying</creator><creator>Yan, Kedong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240622</creationdate><title>Anonymization of face images with Contrastive Learning</title><author>Xu, Xintong ; Cui, Run ; Huang, Chanying ; Yan, Kedong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-ca2c653481add8f5e24e7d0f1da93f20b8403653a276cffec3a39b663d4b4afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xintong</creatorcontrib><creatorcontrib>Cui, Run</creatorcontrib><creatorcontrib>Huang, Chanying</creatorcontrib><creatorcontrib>Yan, Kedong</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xintong</au><au>Cui, Run</au><au>Huang, Chanying</au><au>Yan, Kedong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anonymization of face images with Contrastive Learning</atitle><jtitle>Computer journal</jtitle><date>2024-06-22</date><risdate>2024</risdate><volume>67</volume><issue>5</issue><spage>1910</spage><epage>1919</epage><pages>1910-1919</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Photos or videos taken by individuals often carry sensitive details such as facial identities, which has led to an escalating societal interest in privacy protection measures. We suggest an improved face identity transformer that offers password-protected anonymization and de-anonymization of photo-realistic facial images in visual data. Our face identity transformer is designed to (1) erase facial identity information after anonymization, (2) restore the original face when a correct password is provided and (3) generate an incorrect but realistic face when given an incorrect password. The processes of image anonymization and de-anonymization are facilitated through a password scheme, a multi-task learning objective and generative adversarial networks comprising InfoGAN and contrastive learning. In-depth experiments indicate that our methodology can execute anonymization and de-anonymization based on password conditions whilst reducing training time and enhancing image quality compared to existing anonymization procedures. Additionally, it maintains a recognition rate as low as 4.8% for anonymized images without sacrificing the face detection rate of the original method.</abstract><doi>10.1093/comjnl/bxad111</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4620
ispartof Computer journal, 2024-06, Vol.67 (5), p.1910-1919
issn 0010-4620
1460-2067
language eng
recordid cdi_crossref_primary_10_1093_comjnl_bxad111
source Oxford University Press Journals All Titles (1996-Current)
title Anonymization of face images with Contrastive Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anonymization%20of%20face%20images%20with%20Contrastive%20Learning&rft.jtitle=Computer%20journal&rft.au=Xu,%20Xintong&rft.date=2024-06-22&rft.volume=67&rft.issue=5&rft.spage=1910&rft.epage=1919&rft.pages=1910-1919&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxad111&rft_dat=%3Ccrossref%3E10_1093_comjnl_bxad111%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true