NODSTAC: Novel Outlier Detection Technique Based on Spatial, Temporal and Attribute Correlations on IoT Bigdata
An outlier in the Internet of Things is an immediate change in data induced by a significant difference in the atmosphere (Event) or sensor malfunction (Error). Outliers in the data cause the decision-maker to make incorrect judgments about data analysis. Hence it is essential to detect outliers in...
Gespeichert in:
Veröffentlicht in: | Computer journal 2024-04, Vol.67 (3), p.947-960 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 960 |
---|---|
container_issue | 3 |
container_start_page | 947 |
container_title | Computer journal |
container_volume | 67 |
creator | Brahmam, M Veera Gopikrishnan, S |
description | An outlier in the Internet of Things is an immediate change in data induced by a significant difference in the atmosphere (Event) or sensor malfunction (Error). Outliers in the data cause the decision-maker to make incorrect judgments about data analysis. Hence it is essential to detect outliers in any discipline. The detection of outliers becomes the most crucial task to improve sensor data quality and ensure accuracy, reliability and robustness. In this research, a novel outlier detection technique based on spatial, temporal correlations and attribute correlations is proposed to detect outliers (both Errors and Events). This research uses a correlation measure in the temporal correlation algorithm to determine outliers and the spatial correlation algorithm to classify the outliers, whether the outliers are events or errors. This research uses optimal clusters to improve network lifetime, and malicious nodes were also detected based on spatial–temporal correlations and attribute correlations in these clusters. The experimental results proved that the proposed method in this research outperforms some other models in terms of accuracy against the percentage of outliers infused and detection rate against the false alarm rate. |
doi_str_mv | 10.1093/comjnl/bxad034 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxad034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_comjnl_bxad034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-38b8bfae87bbd58ceca264b082e360fe180c466379a1b84385af9616e568fdde3</originalsourceid><addsrcrecordid>eNotkE1PwjAYxxujiYhePfcDOHi6jtJ5g-ELCWEH5nl52j3TkbFiV4x-eyFw-if_t8OPsUcBIwGpHFu323bt2PxiBTK5YgORKIhiUNNrNgAQECUqhlt21_dbAIghVQPm1vliU8yyZ752P9Ty_BDahjxfUCAbGtfxguxX13wfiM-xp4ofrc0eQ4Pt0zHb7Z3HlmNX8VkIvjGHQDxz3lOLp3l_6i9dwefNZ4UB79lNjW1PDxcdso_XlyJ7j1b52zKbrSIr0iREUhttaiQ9NaaaaEsWY5UY0DFJBTUJDTZRSk5TFEYnUk-wTpVQNFG6riqSQzY6_1rv-t5TXe59s0P_VwooT7jKM67ygkv-A2UCYVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NODSTAC: Novel Outlier Detection Technique Based on Spatial, Temporal and Attribute Correlations on IoT Bigdata</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Brahmam, M Veera ; Gopikrishnan, S</creator><creatorcontrib>Brahmam, M Veera ; Gopikrishnan, S</creatorcontrib><description>An outlier in the Internet of Things is an immediate change in data induced by a significant difference in the atmosphere (Event) or sensor malfunction (Error). Outliers in the data cause the decision-maker to make incorrect judgments about data analysis. Hence it is essential to detect outliers in any discipline. The detection of outliers becomes the most crucial task to improve sensor data quality and ensure accuracy, reliability and robustness. In this research, a novel outlier detection technique based on spatial, temporal correlations and attribute correlations is proposed to detect outliers (both Errors and Events). This research uses a correlation measure in the temporal correlation algorithm to determine outliers and the spatial correlation algorithm to classify the outliers, whether the outliers are events or errors. This research uses optimal clusters to improve network lifetime, and malicious nodes were also detected based on spatial–temporal correlations and attribute correlations in these clusters. The experimental results proved that the proposed method in this research outperforms some other models in terms of accuracy against the percentage of outliers infused and detection rate against the false alarm rate.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxad034</identifier><language>eng</language><ispartof>Computer journal, 2024-04, Vol.67 (3), p.947-960</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-38b8bfae87bbd58ceca264b082e360fe180c466379a1b84385af9616e568fdde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Brahmam, M Veera</creatorcontrib><creatorcontrib>Gopikrishnan, S</creatorcontrib><title>NODSTAC: Novel Outlier Detection Technique Based on Spatial, Temporal and Attribute Correlations on IoT Bigdata</title><title>Computer journal</title><description>An outlier in the Internet of Things is an immediate change in data induced by a significant difference in the atmosphere (Event) or sensor malfunction (Error). Outliers in the data cause the decision-maker to make incorrect judgments about data analysis. Hence it is essential to detect outliers in any discipline. The detection of outliers becomes the most crucial task to improve sensor data quality and ensure accuracy, reliability and robustness. In this research, a novel outlier detection technique based on spatial, temporal correlations and attribute correlations is proposed to detect outliers (both Errors and Events). This research uses a correlation measure in the temporal correlation algorithm to determine outliers and the spatial correlation algorithm to classify the outliers, whether the outliers are events or errors. This research uses optimal clusters to improve network lifetime, and malicious nodes were also detected based on spatial–temporal correlations and attribute correlations in these clusters. The experimental results proved that the proposed method in this research outperforms some other models in terms of accuracy against the percentage of outliers infused and detection rate against the false alarm rate.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwjAYxxujiYhePfcDOHi6jtJ5g-ELCWEH5nl52j3TkbFiV4x-eyFw-if_t8OPsUcBIwGpHFu323bt2PxiBTK5YgORKIhiUNNrNgAQECUqhlt21_dbAIghVQPm1vliU8yyZ752P9Ty_BDahjxfUCAbGtfxguxX13wfiM-xp4ofrc0eQ4Pt0zHb7Z3HlmNX8VkIvjGHQDxz3lOLp3l_6i9dwefNZ4UB79lNjW1PDxcdso_XlyJ7j1b52zKbrSIr0iREUhttaiQ9NaaaaEsWY5UY0DFJBTUJDTZRSk5TFEYnUk-wTpVQNFG6riqSQzY6_1rv-t5TXe59s0P_VwooT7jKM67ygkv-A2UCYVQ</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Brahmam, M Veera</creator><creator>Gopikrishnan, S</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240414</creationdate><title>NODSTAC: Novel Outlier Detection Technique Based on Spatial, Temporal and Attribute Correlations on IoT Bigdata</title><author>Brahmam, M Veera ; Gopikrishnan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-38b8bfae87bbd58ceca264b082e360fe180c466379a1b84385af9616e568fdde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahmam, M Veera</creatorcontrib><creatorcontrib>Gopikrishnan, S</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahmam, M Veera</au><au>Gopikrishnan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NODSTAC: Novel Outlier Detection Technique Based on Spatial, Temporal and Attribute Correlations on IoT Bigdata</atitle><jtitle>Computer journal</jtitle><date>2024-04-14</date><risdate>2024</risdate><volume>67</volume><issue>3</issue><spage>947</spage><epage>960</epage><pages>947-960</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>An outlier in the Internet of Things is an immediate change in data induced by a significant difference in the atmosphere (Event) or sensor malfunction (Error). Outliers in the data cause the decision-maker to make incorrect judgments about data analysis. Hence it is essential to detect outliers in any discipline. The detection of outliers becomes the most crucial task to improve sensor data quality and ensure accuracy, reliability and robustness. In this research, a novel outlier detection technique based on spatial, temporal correlations and attribute correlations is proposed to detect outliers (both Errors and Events). This research uses a correlation measure in the temporal correlation algorithm to determine outliers and the spatial correlation algorithm to classify the outliers, whether the outliers are events or errors. This research uses optimal clusters to improve network lifetime, and malicious nodes were also detected based on spatial–temporal correlations and attribute correlations in these clusters. The experimental results proved that the proposed method in this research outperforms some other models in terms of accuracy against the percentage of outliers infused and detection rate against the false alarm rate.</abstract><doi>10.1093/comjnl/bxad034</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4620 |
ispartof | Computer journal, 2024-04, Vol.67 (3), p.947-960 |
issn | 0010-4620 1460-2067 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comjnl_bxad034 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | NODSTAC: Novel Outlier Detection Technique Based on Spatial, Temporal and Attribute Correlations on IoT Bigdata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NODSTAC:%20Novel%20Outlier%20Detection%20Technique%20Based%20on%20Spatial,%20Temporal%20and%20Attribute%20Correlations%20on%20IoT%20Bigdata&rft.jtitle=Computer%20journal&rft.au=Brahmam,%20M%20Veera&rft.date=2024-04-14&rft.volume=67&rft.issue=3&rft.spage=947&rft.epage=960&rft.pages=947-960&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxad034&rft_dat=%3Ccrossref%3E10_1093_comjnl_bxad034%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |