Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams

Abstract Reversible circuit synthesis methods based on decision diagrams achieve low quantum costs but do not account for quantum bit (qubit) limits for the application of reversible logic in quantum computing. Here, a synthesis method using sub-graphs of shared functional decision diagrams (SFDDs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer journal 2023-10, Vol.66 (10), p.2574-2592
Hauptverfasser: Bu, Dengli, Deng, Junyi, Tang, Pengjie, Yang, Shuhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2592
container_issue 10
container_start_page 2574
container_title Computer journal
container_volume 66
creator Bu, Dengli
Deng, Junyi
Tang, Pengjie
Yang, Shuhong
description Abstract Reversible circuit synthesis methods based on decision diagrams achieve low quantum costs but do not account for quantum bit (qubit) limits for the application of reversible logic in quantum computing. Here, a synthesis method using sub-graphs of shared functional decision diagrams (SFDDs) is proposed for reducing the number of lines when synthesizing reversible circuits. An SFDD is partitioned into sub-graphs by exploiting the longest dominant-active paths, and the sub-graphs are mapped to reversible gate cascades. To further reduce the number of lines, template root matching is presented for reusing circuit lines. Experimental results indicate that the proposed method achieves the known minimum number of lines in many cases and has good scalability. Although the proposed method increases the quantum cost over a prior method based on functional decision diagrams, it significantly reduces the number of lines in most cases. Compared with the one-pass method using quantum multiple-valued decision diagrams, the proposed method reduces the quantum cost without increasing the number of lines in many cases. When compared with the lookup table-based method using a direct mapping flow, the method reduces the number of lines in a few cases. Thus, the method aids in the physical realization of a quantum circuit.
doi_str_mv 10.1093/comjnl/bxac107
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxac107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comjnl/bxac107</oup_id><sourcerecordid>10.1093/comjnl/bxac107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-4308f78f0a5f4841d0478ed16aafbe96c286f9c0f779c0f622dd5b6f6e622e293</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEqGwMntlSPvaSZ1kRCktSEVIhE4MkeO8blzlS3aC6L8nVbuz3N1wd8NDyCODOYMkWKiuObT1oviVikF0RTwWCvA5iOiaeAAM_FBwuCV3zh0AgEMiPPL9iT9onSlqpKmxajQDzY7tUKEzjr7jUHUl3TnT7mk2Fv7eyr5ytNM0q6TFkq7HVg2ma2VNV6iMmyJdGTn1GndPbrSsHT5cfEZ265ev9NXffmze0uetrziPBz8MINZRrEEudRiHrIQwirFkQkpdYCIUj4VOFOgoOqngvCyXhdACp4g8CWZkfv5VtnPOos57axppjzmD_IQmP6PJL2imwdN50I39f90_A9hpJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bu, Dengli ; Deng, Junyi ; Tang, Pengjie ; Yang, Shuhong</creator><creatorcontrib>Bu, Dengli ; Deng, Junyi ; Tang, Pengjie ; Yang, Shuhong</creatorcontrib><description>Abstract Reversible circuit synthesis methods based on decision diagrams achieve low quantum costs but do not account for quantum bit (qubit) limits for the application of reversible logic in quantum computing. Here, a synthesis method using sub-graphs of shared functional decision diagrams (SFDDs) is proposed for reducing the number of lines when synthesizing reversible circuits. An SFDD is partitioned into sub-graphs by exploiting the longest dominant-active paths, and the sub-graphs are mapped to reversible gate cascades. To further reduce the number of lines, template root matching is presented for reusing circuit lines. Experimental results indicate that the proposed method achieves the known minimum number of lines in many cases and has good scalability. Although the proposed method increases the quantum cost over a prior method based on functional decision diagrams, it significantly reduces the number of lines in most cases. Compared with the one-pass method using quantum multiple-valued decision diagrams, the proposed method reduces the quantum cost without increasing the number of lines in many cases. When compared with the lookup table-based method using a direct mapping flow, the method reduces the number of lines in a few cases. Thus, the method aids in the physical realization of a quantum circuit.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxac107</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Computer journal, 2023-10, Vol.66 (10), p.2574-2592</ispartof><rights>The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-4308f78f0a5f4841d0478ed16aafbe96c286f9c0f779c0f622dd5b6f6e622e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Bu, Dengli</creatorcontrib><creatorcontrib>Deng, Junyi</creatorcontrib><creatorcontrib>Tang, Pengjie</creatorcontrib><creatorcontrib>Yang, Shuhong</creatorcontrib><title>Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams</title><title>Computer journal</title><description>Abstract Reversible circuit synthesis methods based on decision diagrams achieve low quantum costs but do not account for quantum bit (qubit) limits for the application of reversible logic in quantum computing. Here, a synthesis method using sub-graphs of shared functional decision diagrams (SFDDs) is proposed for reducing the number of lines when synthesizing reversible circuits. An SFDD is partitioned into sub-graphs by exploiting the longest dominant-active paths, and the sub-graphs are mapped to reversible gate cascades. To further reduce the number of lines, template root matching is presented for reusing circuit lines. Experimental results indicate that the proposed method achieves the known minimum number of lines in many cases and has good scalability. Although the proposed method increases the quantum cost over a prior method based on functional decision diagrams, it significantly reduces the number of lines in most cases. Compared with the one-pass method using quantum multiple-valued decision diagrams, the proposed method reduces the quantum cost without increasing the number of lines in many cases. When compared with the lookup table-based method using a direct mapping flow, the method reduces the number of lines in a few cases. Thus, the method aids in the physical realization of a quantum circuit.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAYhC0EEqGwMntlSPvaSZ1kRCktSEVIhE4MkeO8blzlS3aC6L8nVbuz3N1wd8NDyCODOYMkWKiuObT1oviVikF0RTwWCvA5iOiaeAAM_FBwuCV3zh0AgEMiPPL9iT9onSlqpKmxajQDzY7tUKEzjr7jUHUl3TnT7mk2Fv7eyr5ytNM0q6TFkq7HVg2ma2VNV6iMmyJdGTn1GndPbrSsHT5cfEZ265ev9NXffmze0uetrziPBz8MINZRrEEudRiHrIQwirFkQkpdYCIUj4VOFOgoOqngvCyXhdACp4g8CWZkfv5VtnPOos57axppjzmD_IQmP6PJL2imwdN50I39f90_A9hpJg</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Bu, Dengli</creator><creator>Deng, Junyi</creator><creator>Tang, Pengjie</creator><creator>Yang, Shuhong</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231015</creationdate><title>Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams</title><author>Bu, Dengli ; Deng, Junyi ; Tang, Pengjie ; Yang, Shuhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-4308f78f0a5f4841d0478ed16aafbe96c286f9c0f779c0f622dd5b6f6e622e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Dengli</creatorcontrib><creatorcontrib>Deng, Junyi</creatorcontrib><creatorcontrib>Tang, Pengjie</creatorcontrib><creatorcontrib>Yang, Shuhong</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Dengli</au><au>Deng, Junyi</au><au>Tang, Pengjie</au><au>Yang, Shuhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams</atitle><jtitle>Computer journal</jtitle><date>2023-10-15</date><risdate>2023</risdate><volume>66</volume><issue>10</issue><spage>2574</spage><epage>2592</epage><pages>2574-2592</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Abstract Reversible circuit synthesis methods based on decision diagrams achieve low quantum costs but do not account for quantum bit (qubit) limits for the application of reversible logic in quantum computing. Here, a synthesis method using sub-graphs of shared functional decision diagrams (SFDDs) is proposed for reducing the number of lines when synthesizing reversible circuits. An SFDD is partitioned into sub-graphs by exploiting the longest dominant-active paths, and the sub-graphs are mapped to reversible gate cascades. To further reduce the number of lines, template root matching is presented for reusing circuit lines. Experimental results indicate that the proposed method achieves the known minimum number of lines in many cases and has good scalability. Although the proposed method increases the quantum cost over a prior method based on functional decision diagrams, it significantly reduces the number of lines in most cases. Compared with the one-pass method using quantum multiple-valued decision diagrams, the proposed method reduces the quantum cost without increasing the number of lines in many cases. When compared with the lookup table-based method using a direct mapping flow, the method reduces the number of lines in a few cases. Thus, the method aids in the physical realization of a quantum circuit.</abstract><pub>Oxford University Press</pub><doi>10.1093/comjnl/bxac107</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4620
ispartof Computer journal, 2023-10, Vol.66 (10), p.2574-2592
issn 0010-4620
1460-2067
language eng
recordid cdi_crossref_primary_10_1093_comjnl_bxac107
source Oxford University Press Journals All Titles (1996-Current)
title Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20Circuit%20Synthesis%20Method%20Using%20Sub-graphs%20of%20Shared%20Functional%20Decision%20Diagrams&rft.jtitle=Computer%20journal&rft.au=Bu,%20Dengli&rft.date=2023-10-15&rft.volume=66&rft.issue=10&rft.spage=2574&rft.epage=2592&rft.pages=2574-2592&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxac107&rft_dat=%3Coup_cross%3E10.1093/comjnl/bxac107%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comjnl/bxac107&rfr_iscdi=true