On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness

Abstract Common meadows are arithmetic structures with inverse or division, made total on $0$ by a flag $\bot $ for ease of calculation. We examine some axiomatizations of common meadows to clarify their relationship with commutative rings and serve different theoretical agendas. A common meadow fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer journal 2023-07, Vol.66 (7), p.1565-1572
Hauptverfasser: Bergstra, Jan A, Tucker, John V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1572
container_issue 7
container_start_page 1565
container_title Computer journal
container_volume 66
creator Bergstra, Jan A
Tucker, John V
description Abstract Common meadows are arithmetic structures with inverse or division, made total on $0$ by a flag $\bot $ for ease of calculation. We examine some axiomatizations of common meadows to clarify their relationship with commutative rings and serve different theoretical agendas. A common meadow fracterm calculus is a special form of the equational axiomatization of common meadows, originally based on the use of division on the rational numbers. We study axioms that allow the basic process of simplifying complex expressions involving division. A useful axiomatic extension of the common meadow fracterm calculus imposes the requirement that the characteristic of common meadows be zero (using a simple infinite scheme of closed equations). It is known that these axioms are complete for the full equational theory of common cancellation meadows of characteristic $0$. Here, we show that these axioms do not prove all conditional equations which hold in all common cancellation meadows of characteristic $0$.
doi_str_mv 10.1093/comjnl/bxac026
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxac026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comjnl/bxac026</oup_id><sourcerecordid>10.1093/comjnl/bxac026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-eaa292c77a3e1bfb1ece62a9fdca14e2a0ab4c8fa975e212df6288b90d3f05f03</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMoOKdXz7kKdnuTdunqrRSrg0kR5rm8Td_oRpuMpsX531vp7p4eeHg-4MfYvYCFgCRcatcebLOsTqhBqgs2E5GCQIKKL9kMQEAQKQnX7Mb7AwBISNSMvReW776Ip6e9az0vDM9c2zrL3whr9-2feN6h7qlreYaNHprBP_K8wb4nu7efPLU139jx-tjQaJH3t-zKYOPp7qxz9pE_77LXYFu8bLJ0G-hQhH1AiDKROo4xJFGZSpAmJTExtUYRkUTAKtJrg0m8IilkbZRcr6sE6tDAykA4Z4tpV3fO-45Meez2LXY_pYDyD0g5ASnPQMbCw1Rww_G_7C8HmWWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bergstra, Jan A ; Tucker, John V</creator><creatorcontrib>Bergstra, Jan A ; Tucker, John V</creatorcontrib><description>Abstract Common meadows are arithmetic structures with inverse or division, made total on $0$ by a flag $\bot $ for ease of calculation. We examine some axiomatizations of common meadows to clarify their relationship with commutative rings and serve different theoretical agendas. A common meadow fracterm calculus is a special form of the equational axiomatization of common meadows, originally based on the use of division on the rational numbers. We study axioms that allow the basic process of simplifying complex expressions involving division. A useful axiomatic extension of the common meadow fracterm calculus imposes the requirement that the characteristic of common meadows be zero (using a simple infinite scheme of closed equations). It is known that these axioms are complete for the full equational theory of common cancellation meadows of characteristic $0$. Here, we show that these axioms do not prove all conditional equations which hold in all common cancellation meadows of characteristic $0$.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxac026</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Computer journal, 2023-07, Vol.66 (7), p.1565-1572</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The British Computer Society. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-eaa292c77a3e1bfb1ece62a9fdca14e2a0ab4c8fa975e212df6288b90d3f05f03</citedby><cites>FETCH-LOGICAL-c313t-eaa292c77a3e1bfb1ece62a9fdca14e2a0ab4c8fa975e212df6288b90d3f05f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Bergstra, Jan A</creatorcontrib><creatorcontrib>Tucker, John V</creatorcontrib><title>On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness</title><title>Computer journal</title><description>Abstract Common meadows are arithmetic structures with inverse or division, made total on $0$ by a flag $\bot $ for ease of calculation. We examine some axiomatizations of common meadows to clarify their relationship with commutative rings and serve different theoretical agendas. A common meadow fracterm calculus is a special form of the equational axiomatization of common meadows, originally based on the use of division on the rational numbers. We study axioms that allow the basic process of simplifying complex expressions involving division. A useful axiomatic extension of the common meadow fracterm calculus imposes the requirement that the characteristic of common meadows be zero (using a simple infinite scheme of closed equations). It is known that these axioms are complete for the full equational theory of common cancellation meadows of characteristic $0$. Here, we show that these axioms do not prove all conditional equations which hold in all common cancellation meadows of characteristic $0$.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkM1LwzAYxoMoOKdXz7kKdnuTdunqrRSrg0kR5rm8Td_oRpuMpsX531vp7p4eeHg-4MfYvYCFgCRcatcebLOsTqhBqgs2E5GCQIKKL9kMQEAQKQnX7Mb7AwBISNSMvReW776Ip6e9az0vDM9c2zrL3whr9-2feN6h7qlreYaNHprBP_K8wb4nu7efPLU139jx-tjQaJH3t-zKYOPp7qxz9pE_77LXYFu8bLJ0G-hQhH1AiDKROo4xJFGZSpAmJTExtUYRkUTAKtJrg0m8IilkbZRcr6sE6tDAykA4Z4tpV3fO-45Meez2LXY_pYDyD0g5ASnPQMbCw1Rww_G_7C8HmWWq</recordid><startdate>20230713</startdate><enddate>20230713</enddate><creator>Bergstra, Jan A</creator><creator>Tucker, John V</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230713</creationdate><title>On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness</title><author>Bergstra, Jan A ; Tucker, John V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-eaa292c77a3e1bfb1ece62a9fdca14e2a0ab4c8fa975e212df6288b90d3f05f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergstra, Jan A</creatorcontrib><creatorcontrib>Tucker, John V</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergstra, Jan A</au><au>Tucker, John V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness</atitle><jtitle>Computer journal</jtitle><date>2023-07-13</date><risdate>2023</risdate><volume>66</volume><issue>7</issue><spage>1565</spage><epage>1572</epage><pages>1565-1572</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Abstract Common meadows are arithmetic structures with inverse or division, made total on $0$ by a flag $\bot $ for ease of calculation. We examine some axiomatizations of common meadows to clarify their relationship with commutative rings and serve different theoretical agendas. A common meadow fracterm calculus is a special form of the equational axiomatization of common meadows, originally based on the use of division on the rational numbers. We study axioms that allow the basic process of simplifying complex expressions involving division. A useful axiomatic extension of the common meadow fracterm calculus imposes the requirement that the characteristic of common meadows be zero (using a simple infinite scheme of closed equations). It is known that these axioms are complete for the full equational theory of common cancellation meadows of characteristic $0$. Here, we show that these axioms do not prove all conditional equations which hold in all common cancellation meadows of characteristic $0$.</abstract><pub>Oxford University Press</pub><doi>10.1093/comjnl/bxac026</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4620
ispartof Computer journal, 2023-07, Vol.66 (7), p.1565-1572
issn 0010-4620
1460-2067
language eng
recordid cdi_crossref_primary_10_1093_comjnl_bxac026
source Oxford University Press Journals All Titles (1996-Current)
title On The Axioms Of Common Meadows: Fracterm Calculus, Flattening And Incompleteness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20The%20Axioms%20Of%20Common%20Meadows:%20Fracterm%20Calculus,%20Flattening%20And%20Incompleteness&rft.jtitle=Computer%20journal&rft.au=Bergstra,%20Jan%20A&rft.date=2023-07-13&rft.volume=66&rft.issue=7&rft.spage=1565&rft.epage=1572&rft.pages=1565-1572&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxac026&rft_dat=%3Coup_cross%3E10.1093/comjnl/bxac026%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comjnl/bxac026&rfr_iscdi=true