KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy

Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2018-05, Vol.141 (5), p.1390-1403
Hauptverfasser: Shekh-Ahmad, Tawfeeq, Eckel, Ramona, Dayalan Naidu, Sharadha, Higgins, Maureen, Yamamoto, Masayuki, Dinkova-Kostova, Albena T, Kovac, Stjepana, Abramov, Andrey Y, Walker, Matthew C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1403
container_issue 5
container_start_page 1390
container_title Brain (London, England : 1878)
container_volume 141
creator Shekh-Ahmad, Tawfeeq
Eckel, Ramona
Dayalan Naidu, Sharadha
Higgins, Maureen
Yamamoto, Masayuki
Dinkova-Kostova, Albena T
Kovac, Stjepana
Abramov, Andrey Y
Walker, Matthew C
description Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats. Abstract Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.
doi_str_mv 10.1093/brain/awy071
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_brain_awy071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/brain/awy071</oup_id><sourcerecordid>10.1093/brain/awy071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EoqWwMSNvLITasZPYY4XKQ1TAAHPkxxfVqI0tOynqvycQYGS60tXR1dVB6JySa0okm-uoXDtXH3tS0QM0pbwkWU6L8hBNCSFlJmRBJugkpXdCKGd5eYwmuSyYKHkxRU-Py8ULxa5dO-0651vsEm6hjz5E34Hp3A6wai1OfQgRUoKEuzVgCzvY-LCFtsO-wRDcBkLan6KjRm0SnP3kDL3dLl9v7rPV893DzWKVGZ5XXWbySmnJuVJWKlkZaS2zjCsqqKaCGSYKYoaeaVNWRA5NI_jwOOea00Y0bIauxl0TfUoRmjpEt1VxX1NSf2mpv7XUo5YBvxjx0Ost2D_418MAXI6A78P_U5-4cW4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Shekh-Ahmad, Tawfeeq ; Eckel, Ramona ; Dayalan Naidu, Sharadha ; Higgins, Maureen ; Yamamoto, Masayuki ; Dinkova-Kostova, Albena T ; Kovac, Stjepana ; Abramov, Andrey Y ; Walker, Matthew C</creator><creatorcontrib>Shekh-Ahmad, Tawfeeq ; Eckel, Ramona ; Dayalan Naidu, Sharadha ; Higgins, Maureen ; Yamamoto, Masayuki ; Dinkova-Kostova, Albena T ; Kovac, Stjepana ; Abramov, Andrey Y ; Walker, Matthew C</creatorcontrib><description>Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats. Abstract Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awy071</identifier><identifier>PMID: 29538645</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Animals, Newborn ; Anticonvulsants - chemistry ; Anticonvulsants - therapeutic use ; Cells, Cultured ; Cerebral Cortex - cytology ; Disease Models, Animal ; Epilepsy - chemically induced ; Epilepsy - metabolism ; Epilepsy - therapy ; Excitatory Amino Acid Agonists - toxicity ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Glutathione - metabolism ; Kainic Acid - toxicity ; Kelch-Like ECH-Associated Protein 1 - genetics ; Kelch-Like ECH-Associated Protein 1 - metabolism ; Male ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - genetics ; Mice, Transgenic ; Mutation - genetics ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neurons - drug effects ; Neurons - metabolism ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Rats ; Rats, Sprague-Dawley ; Triterpenes - chemistry ; Triterpenes - therapeutic use</subject><ispartof>Brain (London, England : 1878), 2018-05, Vol.141 (5), p.1390-1403</ispartof><rights>The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</citedby><cites>FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</cites><orcidid>0000-0002-0812-0352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29538645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shekh-Ahmad, Tawfeeq</creatorcontrib><creatorcontrib>Eckel, Ramona</creatorcontrib><creatorcontrib>Dayalan Naidu, Sharadha</creatorcontrib><creatorcontrib>Higgins, Maureen</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Dinkova-Kostova, Albena T</creatorcontrib><creatorcontrib>Kovac, Stjepana</creatorcontrib><creatorcontrib>Abramov, Andrey Y</creatorcontrib><creatorcontrib>Walker, Matthew C</creatorcontrib><title>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats. Abstract Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anticonvulsants - chemistry</subject><subject>Anticonvulsants - therapeutic use</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Disease Models, Animal</subject><subject>Epilepsy - chemically induced</subject><subject>Epilepsy - metabolism</subject><subject>Epilepsy - therapy</subject><subject>Excitatory Amino Acid Agonists - toxicity</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Glutathione - metabolism</subject><subject>Kainic Acid - toxicity</subject><subject>Kelch-Like ECH-Associated Protein 1 - genetics</subject><subject>Kelch-Like ECH-Associated Protein 1 - metabolism</subject><subject>Male</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Mice, Transgenic</subject><subject>Mutation - genetics</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Triterpenes - chemistry</subject><subject>Triterpenes - therapeutic use</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAYRS0EoqWwMSNvLITasZPYY4XKQ1TAAHPkxxfVqI0tOynqvycQYGS60tXR1dVB6JySa0okm-uoXDtXH3tS0QM0pbwkWU6L8hBNCSFlJmRBJugkpXdCKGd5eYwmuSyYKHkxRU-Py8ULxa5dO-0651vsEm6hjz5E34Hp3A6wai1OfQgRUoKEuzVgCzvY-LCFtsO-wRDcBkLan6KjRm0SnP3kDL3dLl9v7rPV893DzWKVGZ5XXWbySmnJuVJWKlkZaS2zjCsqqKaCGSYKYoaeaVNWRA5NI_jwOOea00Y0bIauxl0TfUoRmjpEt1VxX1NSf2mpv7XUo5YBvxjx0Ost2D_418MAXI6A78P_U5-4cW4C</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Shekh-Ahmad, Tawfeeq</creator><creator>Eckel, Ramona</creator><creator>Dayalan Naidu, Sharadha</creator><creator>Higgins, Maureen</creator><creator>Yamamoto, Masayuki</creator><creator>Dinkova-Kostova, Albena T</creator><creator>Kovac, Stjepana</creator><creator>Abramov, Andrey Y</creator><creator>Walker, Matthew C</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0812-0352</orcidid></search><sort><creationdate>20180501</creationdate><title>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</title><author>Shekh-Ahmad, Tawfeeq ; Eckel, Ramona ; Dayalan Naidu, Sharadha ; Higgins, Maureen ; Yamamoto, Masayuki ; Dinkova-Kostova, Albena T ; Kovac, Stjepana ; Abramov, Andrey Y ; Walker, Matthew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anticonvulsants - chemistry</topic><topic>Anticonvulsants - therapeutic use</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Disease Models, Animal</topic><topic>Epilepsy - chemically induced</topic><topic>Epilepsy - metabolism</topic><topic>Epilepsy - therapy</topic><topic>Excitatory Amino Acid Agonists - toxicity</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Glutathione - metabolism</topic><topic>Kainic Acid - toxicity</topic><topic>Kelch-Like ECH-Associated Protein 1 - genetics</topic><topic>Kelch-Like ECH-Associated Protein 1 - metabolism</topic><topic>Male</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Mice, Transgenic</topic><topic>Mutation - genetics</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Triterpenes - chemistry</topic><topic>Triterpenes - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shekh-Ahmad, Tawfeeq</creatorcontrib><creatorcontrib>Eckel, Ramona</creatorcontrib><creatorcontrib>Dayalan Naidu, Sharadha</creatorcontrib><creatorcontrib>Higgins, Maureen</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Dinkova-Kostova, Albena T</creatorcontrib><creatorcontrib>Kovac, Stjepana</creatorcontrib><creatorcontrib>Abramov, Andrey Y</creatorcontrib><creatorcontrib>Walker, Matthew C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shekh-Ahmad, Tawfeeq</au><au>Eckel, Ramona</au><au>Dayalan Naidu, Sharadha</au><au>Higgins, Maureen</au><au>Yamamoto, Masayuki</au><au>Dinkova-Kostova, Albena T</au><au>Kovac, Stjepana</au><au>Abramov, Andrey Y</au><au>Walker, Matthew C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>141</volume><issue>5</issue><spage>1390</spage><epage>1403</epage><pages>1390-1403</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats. Abstract Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29538645</pmid><doi>10.1093/brain/awy071</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0812-0352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2018-05, Vol.141 (5), p.1390-1403
issn 0006-8950
1460-2156
language eng
recordid cdi_crossref_primary_10_1093_brain_awy071
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
Animals, Newborn
Anticonvulsants - chemistry
Anticonvulsants - therapeutic use
Cells, Cultured
Cerebral Cortex - cytology
Disease Models, Animal
Epilepsy - chemically induced
Epilepsy - metabolism
Epilepsy - therapy
Excitatory Amino Acid Agonists - toxicity
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Glutathione - metabolism
Kainic Acid - toxicity
Kelch-Like ECH-Associated Protein 1 - genetics
Kelch-Like ECH-Associated Protein 1 - metabolism
Male
Membrane Potential, Mitochondrial - drug effects
Membrane Potential, Mitochondrial - genetics
Mice, Transgenic
Mutation - genetics
Neuroglia - drug effects
Neuroglia - metabolism
Neurons - drug effects
Neurons - metabolism
Oxidative Stress - drug effects
Oxidative Stress - genetics
Rats
Rats, Sprague-Dawley
Triterpenes - chemistry
Triterpenes - therapeutic use
title KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KEAP1%20inhibition%20is%20neuroprotective%20and%20suppresses%20the%20development%20of%20epilepsy&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Shekh-Ahmad,%20Tawfeeq&rft.date=2018-05-01&rft.volume=141&rft.issue=5&rft.spage=1390&rft.epage=1403&rft.pages=1390-1403&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awy071&rft_dat=%3Coup_cross%3E10.1093/brain/awy071%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29538645&rft_oup_id=10.1093/brain/awy071&rfr_iscdi=true