KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy
Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2018-05, Vol.141 (5), p.1390-1403 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1403 |
---|---|
container_issue | 5 |
container_start_page | 1390 |
container_title | Brain (London, England : 1878) |
container_volume | 141 |
creator | Shekh-Ahmad, Tawfeeq Eckel, Ramona Dayalan Naidu, Sharadha Higgins, Maureen Yamamoto, Masayuki Dinkova-Kostova, Albena T Kovac, Stjepana Abramov, Andrey Y Walker, Matthew C |
description | Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats.
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy. |
doi_str_mv | 10.1093/brain/awy071 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_brain_awy071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/brain/awy071</oup_id><sourcerecordid>10.1093/brain/awy071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EoqWwMSNvLITasZPYY4XKQ1TAAHPkxxfVqI0tOynqvycQYGS60tXR1dVB6JySa0okm-uoXDtXH3tS0QM0pbwkWU6L8hBNCSFlJmRBJugkpXdCKGd5eYwmuSyYKHkxRU-Py8ULxa5dO-0651vsEm6hjz5E34Hp3A6wai1OfQgRUoKEuzVgCzvY-LCFtsO-wRDcBkLan6KjRm0SnP3kDL3dLl9v7rPV893DzWKVGZ5XXWbySmnJuVJWKlkZaS2zjCsqqKaCGSYKYoaeaVNWRA5NI_jwOOea00Y0bIauxl0TfUoRmjpEt1VxX1NSf2mpv7XUo5YBvxjx0Ost2D_418MAXI6A78P_U5-4cW4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Shekh-Ahmad, Tawfeeq ; Eckel, Ramona ; Dayalan Naidu, Sharadha ; Higgins, Maureen ; Yamamoto, Masayuki ; Dinkova-Kostova, Albena T ; Kovac, Stjepana ; Abramov, Andrey Y ; Walker, Matthew C</creator><creatorcontrib>Shekh-Ahmad, Tawfeeq ; Eckel, Ramona ; Dayalan Naidu, Sharadha ; Higgins, Maureen ; Yamamoto, Masayuki ; Dinkova-Kostova, Albena T ; Kovac, Stjepana ; Abramov, Andrey Y ; Walker, Matthew C</creatorcontrib><description>Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats.
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awy071</identifier><identifier>PMID: 29538645</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Animals, Newborn ; Anticonvulsants - chemistry ; Anticonvulsants - therapeutic use ; Cells, Cultured ; Cerebral Cortex - cytology ; Disease Models, Animal ; Epilepsy - chemically induced ; Epilepsy - metabolism ; Epilepsy - therapy ; Excitatory Amino Acid Agonists - toxicity ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Glutathione - metabolism ; Kainic Acid - toxicity ; Kelch-Like ECH-Associated Protein 1 - genetics ; Kelch-Like ECH-Associated Protein 1 - metabolism ; Male ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - genetics ; Mice, Transgenic ; Mutation - genetics ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neurons - drug effects ; Neurons - metabolism ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Rats ; Rats, Sprague-Dawley ; Triterpenes - chemistry ; Triterpenes - therapeutic use</subject><ispartof>Brain (London, England : 1878), 2018-05, Vol.141 (5), p.1390-1403</ispartof><rights>The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</citedby><cites>FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</cites><orcidid>0000-0002-0812-0352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29538645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shekh-Ahmad, Tawfeeq</creatorcontrib><creatorcontrib>Eckel, Ramona</creatorcontrib><creatorcontrib>Dayalan Naidu, Sharadha</creatorcontrib><creatorcontrib>Higgins, Maureen</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Dinkova-Kostova, Albena T</creatorcontrib><creatorcontrib>Kovac, Stjepana</creatorcontrib><creatorcontrib>Abramov, Andrey Y</creatorcontrib><creatorcontrib>Walker, Matthew C</creatorcontrib><title>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats.
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anticonvulsants - chemistry</subject><subject>Anticonvulsants - therapeutic use</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Disease Models, Animal</subject><subject>Epilepsy - chemically induced</subject><subject>Epilepsy - metabolism</subject><subject>Epilepsy - therapy</subject><subject>Excitatory Amino Acid Agonists - toxicity</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Glutathione - metabolism</subject><subject>Kainic Acid - toxicity</subject><subject>Kelch-Like ECH-Associated Protein 1 - genetics</subject><subject>Kelch-Like ECH-Associated Protein 1 - metabolism</subject><subject>Male</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Mice, Transgenic</subject><subject>Mutation - genetics</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Triterpenes - chemistry</subject><subject>Triterpenes - therapeutic use</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAYRS0EoqWwMSNvLITasZPYY4XKQ1TAAHPkxxfVqI0tOynqvycQYGS60tXR1dVB6JySa0okm-uoXDtXH3tS0QM0pbwkWU6L8hBNCSFlJmRBJugkpXdCKGd5eYwmuSyYKHkxRU-Py8ULxa5dO-0651vsEm6hjz5E34Hp3A6wai1OfQgRUoKEuzVgCzvY-LCFtsO-wRDcBkLan6KjRm0SnP3kDL3dLl9v7rPV893DzWKVGZ5XXWbySmnJuVJWKlkZaS2zjCsqqKaCGSYKYoaeaVNWRA5NI_jwOOea00Y0bIauxl0TfUoRmjpEt1VxX1NSf2mpv7XUo5YBvxjx0Ost2D_418MAXI6A78P_U5-4cW4C</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Shekh-Ahmad, Tawfeeq</creator><creator>Eckel, Ramona</creator><creator>Dayalan Naidu, Sharadha</creator><creator>Higgins, Maureen</creator><creator>Yamamoto, Masayuki</creator><creator>Dinkova-Kostova, Albena T</creator><creator>Kovac, Stjepana</creator><creator>Abramov, Andrey Y</creator><creator>Walker, Matthew C</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0812-0352</orcidid></search><sort><creationdate>20180501</creationdate><title>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</title><author>Shekh-Ahmad, Tawfeeq ; Eckel, Ramona ; Dayalan Naidu, Sharadha ; Higgins, Maureen ; Yamamoto, Masayuki ; Dinkova-Kostova, Albena T ; Kovac, Stjepana ; Abramov, Andrey Y ; Walker, Matthew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c27ab944aad9a97c9dd3d34a181b183c3850c97c3bc670983cf8438624b41f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anticonvulsants - chemistry</topic><topic>Anticonvulsants - therapeutic use</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Disease Models, Animal</topic><topic>Epilepsy - chemically induced</topic><topic>Epilepsy - metabolism</topic><topic>Epilepsy - therapy</topic><topic>Excitatory Amino Acid Agonists - toxicity</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Glutathione - metabolism</topic><topic>Kainic Acid - toxicity</topic><topic>Kelch-Like ECH-Associated Protein 1 - genetics</topic><topic>Kelch-Like ECH-Associated Protein 1 - metabolism</topic><topic>Male</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Mice, Transgenic</topic><topic>Mutation - genetics</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Triterpenes - chemistry</topic><topic>Triterpenes - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shekh-Ahmad, Tawfeeq</creatorcontrib><creatorcontrib>Eckel, Ramona</creatorcontrib><creatorcontrib>Dayalan Naidu, Sharadha</creatorcontrib><creatorcontrib>Higgins, Maureen</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Dinkova-Kostova, Albena T</creatorcontrib><creatorcontrib>Kovac, Stjepana</creatorcontrib><creatorcontrib>Abramov, Andrey Y</creatorcontrib><creatorcontrib>Walker, Matthew C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shekh-Ahmad, Tawfeeq</au><au>Eckel, Ramona</au><au>Dayalan Naidu, Sharadha</au><au>Higgins, Maureen</au><au>Yamamoto, Masayuki</au><au>Dinkova-Kostova, Albena T</au><au>Kovac, Stjepana</au><au>Abramov, Andrey Y</au><au>Walker, Matthew C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>141</volume><issue>5</issue><spage>1390</spage><epage>1403</epage><pages>1390-1403</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>Reactive oxygen species are hypothesised to play a critical role in the development of epilepsy. Shekh-Ahmad et al. report that decreasing reactive oxygen species with RTA 408 following status epilepticus protects cellular energy production, prevents cell death, and markedly reduces the frequency of late spontaneous seizures in rats.
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29538645</pmid><doi>10.1093/brain/awy071</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0812-0352</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2018-05, Vol.141 (5), p.1390-1403 |
issn | 0006-8950 1460-2156 |
language | eng |
recordid | cdi_crossref_primary_10_1093_brain_awy071 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Animals Animals, Newborn Anticonvulsants - chemistry Anticonvulsants - therapeutic use Cells, Cultured Cerebral Cortex - cytology Disease Models, Animal Epilepsy - chemically induced Epilepsy - metabolism Epilepsy - therapy Excitatory Amino Acid Agonists - toxicity Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Glutathione - metabolism Kainic Acid - toxicity Kelch-Like ECH-Associated Protein 1 - genetics Kelch-Like ECH-Associated Protein 1 - metabolism Male Membrane Potential, Mitochondrial - drug effects Membrane Potential, Mitochondrial - genetics Mice, Transgenic Mutation - genetics Neuroglia - drug effects Neuroglia - metabolism Neurons - drug effects Neurons - metabolism Oxidative Stress - drug effects Oxidative Stress - genetics Rats Rats, Sprague-Dawley Triterpenes - chemistry Triterpenes - therapeutic use |
title | KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KEAP1%20inhibition%20is%20neuroprotective%20and%20suppresses%20the%20development%20of%20epilepsy&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Shekh-Ahmad,%20Tawfeeq&rft.date=2018-05-01&rft.volume=141&rft.issue=5&rft.spage=1390&rft.epage=1403&rft.pages=1390-1403&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awy071&rft_dat=%3Coup_cross%3E10.1093/brain/awy071%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29538645&rft_oup_id=10.1093/brain/awy071&rfr_iscdi=true |