Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia
Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2020-08, Vol.143 (8), p.2421-2436 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2436 |
---|---|
container_issue | 8 |
container_start_page | 2421 |
container_title | Brain (London, England : 1878) |
container_volume | 143 |
creator | Chen, Lubin Huang, Jianying Benson, Curtis Lankford, Karen L Zhao, Peng Carrara, Jennifer Tan, Andrew M Kocsis, Jeffery D Waxman, Stephen G Dib-Hajj, Sulayman D |
description | Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia. |
doi_str_mv | 10.1093/brain/awaa208 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_brain_awaa208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32830219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</originalsourceid><addsrcrecordid>eNo90D1PwzAUhWELgWgpjKzIf8DttZ04yYgqvqQKBugc3dg3wih1Kjsp6r-nUGA6y6MzvIxdS5hLqPSiiejDAj8RFZQnbCozA0LJ3JyyKQAYUVY5TNhFSh8AMtPKnLOJVqUGJaspW7_2zo8bbt8xBOr4M-7k3HAfeKKQ-rjngcbYh8RtH4bom3GgxIee73yw0afBBxI-uNGS49h1vdsHj5fsrMUu0dXvztj6_u5t-ShWLw9Py9uVsCorSkHOGuvylqAtCgektNVQlVZLicYYC0XjMCeVZWVjJeYZ5a12CmxTHCyCnjFx_LWxTylSW2-j32Dc1xLq7zz1T576N8_B3xz9dmw25P71Xw_9Bb8bZEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Lubin ; Huang, Jianying ; Benson, Curtis ; Lankford, Karen L ; Zhao, Peng ; Carrara, Jennifer ; Tan, Andrew M ; Kocsis, Jeffery D ; Waxman, Stephen G ; Dib-Hajj, Sulayman D</creator><creatorcontrib>Chen, Lubin ; Huang, Jianying ; Benson, Curtis ; Lankford, Karen L ; Zhao, Peng ; Carrara, Jennifer ; Tan, Andrew M ; Kocsis, Jeffery D ; Waxman, Stephen G ; Dib-Hajj, Sulayman D</creatorcontrib><description>Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awaa208</identifier><identifier>PMID: 32830219</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - toxicity ; Female ; Ganglia, Spinal - drug effects ; Ganglia, Spinal - metabolism ; Hyperalgesia - chemically induced ; Hyperalgesia - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; NAV1.6 Voltage-Gated Sodium Channel - metabolism ; Peripheral Nervous System Diseases - chemically induced ; Peripheral Nervous System Diseases - metabolism ; Sensory Receptor Cells - drug effects ; Sensory Receptor Cells - metabolism ; Vincristine - toxicity</subject><ispartof>Brain (London, England : 1878), 2020-08, Vol.143 (8), p.2421-2436</ispartof><rights>The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</citedby><cites>FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</cites><orcidid>0000-0002-4137-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32830219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lubin</creatorcontrib><creatorcontrib>Huang, Jianying</creatorcontrib><creatorcontrib>Benson, Curtis</creatorcontrib><creatorcontrib>Lankford, Karen L</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Carrara, Jennifer</creatorcontrib><creatorcontrib>Tan, Andrew M</creatorcontrib><creatorcontrib>Kocsis, Jeffery D</creatorcontrib><creatorcontrib>Waxman, Stephen G</creatorcontrib><creatorcontrib>Dib-Hajj, Sulayman D</creatorcontrib><title>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - toxicity</subject><subject>Female</subject><subject>Ganglia, Spinal - drug effects</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Hyperalgesia - chemically induced</subject><subject>Hyperalgesia - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NAV1.6 Voltage-Gated Sodium Channel - metabolism</subject><subject>Peripheral Nervous System Diseases - chemically induced</subject><subject>Peripheral Nervous System Diseases - metabolism</subject><subject>Sensory Receptor Cells - drug effects</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Vincristine - toxicity</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90D1PwzAUhWELgWgpjKzIf8DttZ04yYgqvqQKBugc3dg3wih1Kjsp6r-nUGA6y6MzvIxdS5hLqPSiiejDAj8RFZQnbCozA0LJ3JyyKQAYUVY5TNhFSh8AMtPKnLOJVqUGJaspW7_2zo8bbt8xBOr4M-7k3HAfeKKQ-rjngcbYh8RtH4bom3GgxIee73yw0afBBxI-uNGS49h1vdsHj5fsrMUu0dXvztj6_u5t-ShWLw9Py9uVsCorSkHOGuvylqAtCgektNVQlVZLicYYC0XjMCeVZWVjJeYZ5a12CmxTHCyCnjFx_LWxTylSW2-j32Dc1xLq7zz1T576N8_B3xz9dmw25P71Xw_9Bb8bZEE</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chen, Lubin</creator><creator>Huang, Jianying</creator><creator>Benson, Curtis</creator><creator>Lankford, Karen L</creator><creator>Zhao, Peng</creator><creator>Carrara, Jennifer</creator><creator>Tan, Andrew M</creator><creator>Kocsis, Jeffery D</creator><creator>Waxman, Stephen G</creator><creator>Dib-Hajj, Sulayman D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4137-1655</orcidid></search><sort><creationdate>20200801</creationdate><title>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</title><author>Chen, Lubin ; Huang, Jianying ; Benson, Curtis ; Lankford, Karen L ; Zhao, Peng ; Carrara, Jennifer ; Tan, Andrew M ; Kocsis, Jeffery D ; Waxman, Stephen G ; Dib-Hajj, Sulayman D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - toxicity</topic><topic>Female</topic><topic>Ganglia, Spinal - drug effects</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Hyperalgesia - chemically induced</topic><topic>Hyperalgesia - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NAV1.6 Voltage-Gated Sodium Channel - metabolism</topic><topic>Peripheral Nervous System Diseases - chemically induced</topic><topic>Peripheral Nervous System Diseases - metabolism</topic><topic>Sensory Receptor Cells - drug effects</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Vincristine - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lubin</creatorcontrib><creatorcontrib>Huang, Jianying</creatorcontrib><creatorcontrib>Benson, Curtis</creatorcontrib><creatorcontrib>Lankford, Karen L</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Carrara, Jennifer</creatorcontrib><creatorcontrib>Tan, Andrew M</creatorcontrib><creatorcontrib>Kocsis, Jeffery D</creatorcontrib><creatorcontrib>Waxman, Stephen G</creatorcontrib><creatorcontrib>Dib-Hajj, Sulayman D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lubin</au><au>Huang, Jianying</au><au>Benson, Curtis</au><au>Lankford, Karen L</au><au>Zhao, Peng</au><au>Carrara, Jennifer</au><au>Tan, Andrew M</au><au>Kocsis, Jeffery D</au><au>Waxman, Stephen G</au><au>Dib-Hajj, Sulayman D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>143</volume><issue>8</issue><spage>2421</spage><epage>2436</epage><pages>2421-2436</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.</abstract><cop>England</cop><pmid>32830219</pmid><doi>10.1093/brain/awaa208</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4137-1655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2020-08, Vol.143 (8), p.2421-2436 |
issn | 0006-8950 1460-2156 |
language | eng |
recordid | cdi_crossref_primary_10_1093_brain_awaa208 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Antineoplastic Agents, Phytogenic - toxicity Female Ganglia, Spinal - drug effects Ganglia, Spinal - metabolism Hyperalgesia - chemically induced Hyperalgesia - metabolism Male Mice Mice, Inbred C57BL NAV1.6 Voltage-Gated Sodium Channel - metabolism Peripheral Nervous System Diseases - chemically induced Peripheral Nervous System Diseases - metabolism Sensory Receptor Cells - drug effects Sensory Receptor Cells - metabolism Vincristine - toxicity |
title | Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20channel%20Nav1.6%20in%20sensory%20neurons%20contributes%20to%20vincristine-induced%20allodynia&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Chen,%20Lubin&rft.date=2020-08-01&rft.volume=143&rft.issue=8&rft.spage=2421&rft.epage=2436&rft.pages=2421-2436&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awaa208&rft_dat=%3Cpubmed_cross%3E32830219%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32830219&rfr_iscdi=true |