Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia

Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2020-08, Vol.143 (8), p.2421-2436
Hauptverfasser: Chen, Lubin, Huang, Jianying, Benson, Curtis, Lankford, Karen L, Zhao, Peng, Carrara, Jennifer, Tan, Andrew M, Kocsis, Jeffery D, Waxman, Stephen G, Dib-Hajj, Sulayman D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2436
container_issue 8
container_start_page 2421
container_title Brain (London, England : 1878)
container_volume 143
creator Chen, Lubin
Huang, Jianying
Benson, Curtis
Lankford, Karen L
Zhao, Peng
Carrara, Jennifer
Tan, Andrew M
Kocsis, Jeffery D
Waxman, Stephen G
Dib-Hajj, Sulayman D
description Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.
doi_str_mv 10.1093/brain/awaa208
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_brain_awaa208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32830219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</originalsourceid><addsrcrecordid>eNo90D1PwzAUhWELgWgpjKzIf8DttZ04yYgqvqQKBugc3dg3wih1Kjsp6r-nUGA6y6MzvIxdS5hLqPSiiejDAj8RFZQnbCozA0LJ3JyyKQAYUVY5TNhFSh8AMtPKnLOJVqUGJaspW7_2zo8bbt8xBOr4M-7k3HAfeKKQ-rjngcbYh8RtH4bom3GgxIee73yw0afBBxI-uNGS49h1vdsHj5fsrMUu0dXvztj6_u5t-ShWLw9Py9uVsCorSkHOGuvylqAtCgektNVQlVZLicYYC0XjMCeVZWVjJeYZ5a12CmxTHCyCnjFx_LWxTylSW2-j32Dc1xLq7zz1T576N8_B3xz9dmw25P71Xw_9Bb8bZEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Lubin ; Huang, Jianying ; Benson, Curtis ; Lankford, Karen L ; Zhao, Peng ; Carrara, Jennifer ; Tan, Andrew M ; Kocsis, Jeffery D ; Waxman, Stephen G ; Dib-Hajj, Sulayman D</creator><creatorcontrib>Chen, Lubin ; Huang, Jianying ; Benson, Curtis ; Lankford, Karen L ; Zhao, Peng ; Carrara, Jennifer ; Tan, Andrew M ; Kocsis, Jeffery D ; Waxman, Stephen G ; Dib-Hajj, Sulayman D</creatorcontrib><description>Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awaa208</identifier><identifier>PMID: 32830219</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - toxicity ; Female ; Ganglia, Spinal - drug effects ; Ganglia, Spinal - metabolism ; Hyperalgesia - chemically induced ; Hyperalgesia - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; NAV1.6 Voltage-Gated Sodium Channel - metabolism ; Peripheral Nervous System Diseases - chemically induced ; Peripheral Nervous System Diseases - metabolism ; Sensory Receptor Cells - drug effects ; Sensory Receptor Cells - metabolism ; Vincristine - toxicity</subject><ispartof>Brain (London, England : 1878), 2020-08, Vol.143 (8), p.2421-2436</ispartof><rights>The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</citedby><cites>FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</cites><orcidid>0000-0002-4137-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32830219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lubin</creatorcontrib><creatorcontrib>Huang, Jianying</creatorcontrib><creatorcontrib>Benson, Curtis</creatorcontrib><creatorcontrib>Lankford, Karen L</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Carrara, Jennifer</creatorcontrib><creatorcontrib>Tan, Andrew M</creatorcontrib><creatorcontrib>Kocsis, Jeffery D</creatorcontrib><creatorcontrib>Waxman, Stephen G</creatorcontrib><creatorcontrib>Dib-Hajj, Sulayman D</creatorcontrib><title>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - toxicity</subject><subject>Female</subject><subject>Ganglia, Spinal - drug effects</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Hyperalgesia - chemically induced</subject><subject>Hyperalgesia - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NAV1.6 Voltage-Gated Sodium Channel - metabolism</subject><subject>Peripheral Nervous System Diseases - chemically induced</subject><subject>Peripheral Nervous System Diseases - metabolism</subject><subject>Sensory Receptor Cells - drug effects</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Vincristine - toxicity</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90D1PwzAUhWELgWgpjKzIf8DttZ04yYgqvqQKBugc3dg3wih1Kjsp6r-nUGA6y6MzvIxdS5hLqPSiiejDAj8RFZQnbCozA0LJ3JyyKQAYUVY5TNhFSh8AMtPKnLOJVqUGJaspW7_2zo8bbt8xBOr4M-7k3HAfeKKQ-rjngcbYh8RtH4bom3GgxIee73yw0afBBxI-uNGS49h1vdsHj5fsrMUu0dXvztj6_u5t-ShWLw9Py9uVsCorSkHOGuvylqAtCgektNVQlVZLicYYC0XjMCeVZWVjJeYZ5a12CmxTHCyCnjFx_LWxTylSW2-j32Dc1xLq7zz1T576N8_B3xz9dmw25P71Xw_9Bb8bZEE</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chen, Lubin</creator><creator>Huang, Jianying</creator><creator>Benson, Curtis</creator><creator>Lankford, Karen L</creator><creator>Zhao, Peng</creator><creator>Carrara, Jennifer</creator><creator>Tan, Andrew M</creator><creator>Kocsis, Jeffery D</creator><creator>Waxman, Stephen G</creator><creator>Dib-Hajj, Sulayman D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4137-1655</orcidid></search><sort><creationdate>20200801</creationdate><title>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</title><author>Chen, Lubin ; Huang, Jianying ; Benson, Curtis ; Lankford, Karen L ; Zhao, Peng ; Carrara, Jennifer ; Tan, Andrew M ; Kocsis, Jeffery D ; Waxman, Stephen G ; Dib-Hajj, Sulayman D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2478-edc6cd5fe0f77d0e23c3098c311a666c07bda5e2448bc1a54e5f3d20cb7e23a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - toxicity</topic><topic>Female</topic><topic>Ganglia, Spinal - drug effects</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Hyperalgesia - chemically induced</topic><topic>Hyperalgesia - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NAV1.6 Voltage-Gated Sodium Channel - metabolism</topic><topic>Peripheral Nervous System Diseases - chemically induced</topic><topic>Peripheral Nervous System Diseases - metabolism</topic><topic>Sensory Receptor Cells - drug effects</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Vincristine - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lubin</creatorcontrib><creatorcontrib>Huang, Jianying</creatorcontrib><creatorcontrib>Benson, Curtis</creatorcontrib><creatorcontrib>Lankford, Karen L</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Carrara, Jennifer</creatorcontrib><creatorcontrib>Tan, Andrew M</creatorcontrib><creatorcontrib>Kocsis, Jeffery D</creatorcontrib><creatorcontrib>Waxman, Stephen G</creatorcontrib><creatorcontrib>Dib-Hajj, Sulayman D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lubin</au><au>Huang, Jianying</au><au>Benson, Curtis</au><au>Lankford, Karen L</au><au>Zhao, Peng</au><au>Carrara, Jennifer</au><au>Tan, Andrew M</au><au>Kocsis, Jeffery D</au><au>Waxman, Stephen G</au><au>Dib-Hajj, Sulayman D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>143</volume><issue>8</issue><spage>2421</spage><epage>2436</epage><pages>2421-2436</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.</abstract><cop>England</cop><pmid>32830219</pmid><doi>10.1093/brain/awaa208</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4137-1655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2020-08, Vol.143 (8), p.2421-2436
issn 0006-8950
1460-2156
language eng
recordid cdi_crossref_primary_10_1093_brain_awaa208
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Antineoplastic Agents, Phytogenic - toxicity
Female
Ganglia, Spinal - drug effects
Ganglia, Spinal - metabolism
Hyperalgesia - chemically induced
Hyperalgesia - metabolism
Male
Mice
Mice, Inbred C57BL
NAV1.6 Voltage-Gated Sodium Channel - metabolism
Peripheral Nervous System Diseases - chemically induced
Peripheral Nervous System Diseases - metabolism
Sensory Receptor Cells - drug effects
Sensory Receptor Cells - metabolism
Vincristine - toxicity
title Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20channel%20Nav1.6%20in%20sensory%20neurons%20contributes%20to%20vincristine-induced%20allodynia&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Chen,%20Lubin&rft.date=2020-08-01&rft.volume=143&rft.issue=8&rft.spage=2421&rft.epage=2436&rft.pages=2421-2436&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awaa208&rft_dat=%3Cpubmed_cross%3E32830219%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32830219&rfr_iscdi=true