In-sample forecasting with local linear survival densities

In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2016-12, Vol.103 (4), p.843-859
Hauptverfasser: HIABU, M., MAMMEN, E., MARTÍNEZ-MIRANDA, M. D., NIELSEN, J. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 859
container_issue 4
container_start_page 843
container_title Biometrika
container_volume 103
creator HIABU, M.
MAMMEN, E.
MARTÍNEZ-MIRANDA, M. D.
NIELSEN, J. P.
description In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance, the in-sample area is defined as one triangle and the forecasting area as the triangle which, added to the first triangle, completes a square. In recent approaches, two one-dimensional components are estimated by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. We then use the local linear density smoother with weighted crossvalidated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time-reversal. Finite-sample studies and an application to non-life insurance are included.
doi_str_mv 10.1093/biomet/asw038
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_asw038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26363490</jstor_id><sourcerecordid>26363490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-eb74861d4e30565713dd347621ddb1ddf8581a45d12581a21d9a73f36edc48be3</originalsourceid><addsrcrecordid>eNo9j01LxDAQhoMoWFePHoX-gbhJJ0lbb7L4sbDgRc8lbaaapR9LJu7iv7el4mGYeV8eBh7GbqW4l6KEde3HHuPa0klAccYSqYzioKU4Z4kQwnBQSl2yK6L9HI02CXvYDpxsf-gwbceAjaXoh8_05ONX2o2N7dLOD2hDSt_h6I9TdjiQjx7pml20tiO8-dsr9vH89L555bu3l-3mccebrCwixzpXhZFOIQhtdC7BOVC5yaRz9TRtoQtplXYym4-pLm0OLRh0jSpqhBXjy98mjEQB2-oQfG_DTyVFNYtXi3i1iE_83cLvKY7hH84MGFClgF-RsFgK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-sample forecasting with local linear survival densities</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR Mathematics &amp; Statistics</source><creator>HIABU, M. ; MAMMEN, E. ; MARTÍNEZ-MIRANDA, M. D. ; NIELSEN, J. P.</creator><creatorcontrib>HIABU, M. ; MAMMEN, E. ; MARTÍNEZ-MIRANDA, M. D. ; NIELSEN, J. P.</creatorcontrib><description>In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance, the in-sample area is defined as one triangle and the forecasting area as the triangle which, added to the first triangle, completes a square. In recent approaches, two one-dimensional components are estimated by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. We then use the local linear density smoother with weighted crossvalidated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time-reversal. Finite-sample studies and an application to non-life insurance are included.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asw038</identifier><language>eng</language><publisher>Biometrika Trust</publisher><ispartof>Biometrika, 2016-12, Vol.103 (4), p.843-859</ispartof><rights>2016 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-eb74861d4e30565713dd347621ddb1ddf8581a45d12581a21d9a73f36edc48be3</citedby><cites>FETCH-LOGICAL-c298t-eb74861d4e30565713dd347621ddb1ddf8581a45d12581a21d9a73f36edc48be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26363490$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26363490$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>HIABU, M.</creatorcontrib><creatorcontrib>MAMMEN, E.</creatorcontrib><creatorcontrib>MARTÍNEZ-MIRANDA, M. D.</creatorcontrib><creatorcontrib>NIELSEN, J. P.</creatorcontrib><title>In-sample forecasting with local linear survival densities</title><title>Biometrika</title><description>In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance, the in-sample area is defined as one triangle and the forecasting area as the triangle which, added to the first triangle, completes a square. In recent approaches, two one-dimensional components are estimated by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. We then use the local linear density smoother with weighted crossvalidated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time-reversal. Finite-sample studies and an application to non-life insurance are included.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAQhoMoWFePHoX-gbhJJ0lbb7L4sbDgRc8lbaaapR9LJu7iv7el4mGYeV8eBh7GbqW4l6KEde3HHuPa0klAccYSqYzioKU4Z4kQwnBQSl2yK6L9HI02CXvYDpxsf-gwbceAjaXoh8_05ONX2o2N7dLOD2hDSt_h6I9TdjiQjx7pml20tiO8-dsr9vH89L555bu3l-3mccebrCwixzpXhZFOIQhtdC7BOVC5yaRz9TRtoQtplXYym4-pLm0OLRh0jSpqhBXjy98mjEQB2-oQfG_DTyVFNYtXi3i1iE_83cLvKY7hH84MGFClgF-RsFgK</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>HIABU, M.</creator><creator>MAMMEN, E.</creator><creator>MARTÍNEZ-MIRANDA, M. D.</creator><creator>NIELSEN, J. P.</creator><general>Biometrika Trust</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>In-sample forecasting with local linear survival densities</title><author>HIABU, M. ; MAMMEN, E. ; MARTÍNEZ-MIRANDA, M. D. ; NIELSEN, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-eb74861d4e30565713dd347621ddb1ddf8581a45d12581a21d9a73f36edc48be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HIABU, M.</creatorcontrib><creatorcontrib>MAMMEN, E.</creatorcontrib><creatorcontrib>MARTÍNEZ-MIRANDA, M. D.</creatorcontrib><creatorcontrib>NIELSEN, J. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HIABU, M.</au><au>MAMMEN, E.</au><au>MARTÍNEZ-MIRANDA, M. D.</au><au>NIELSEN, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-sample forecasting with local linear survival densities</atitle><jtitle>Biometrika</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>103</volume><issue>4</issue><spage>843</spage><epage>859</epage><pages>843-859</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance, the in-sample area is defined as one triangle and the forecasting area as the triangle which, added to the first triangle, completes a square. In recent approaches, two one-dimensional components are estimated by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. We then use the local linear density smoother with weighted crossvalidated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time-reversal. Finite-sample studies and an application to non-life insurance are included.</abstract><pub>Biometrika Trust</pub><doi>10.1093/biomet/asw038</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2016-12, Vol.103 (4), p.843-859
issn 0006-3444
1464-3510
language eng
recordid cdi_crossref_primary_10_1093_biomet_asw038
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); JSTOR Mathematics & Statistics
title In-sample forecasting with local linear survival densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-sample%20forecasting%20with%20local%20linear%20survival%20densities&rft.jtitle=Biometrika&rft.au=HIABU,%20M.&rft.date=2016-12-01&rft.volume=103&rft.issue=4&rft.spage=843&rft.epage=859&rft.pages=843-859&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asw038&rft_dat=%3Cjstor_cross%3E26363490%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26363490&rfr_iscdi=true