On the phase transition of Wilks’ phenomenon

Wilks’ theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, researchers have found that the conventional Wilks’ phenomenon of the likelihood ratio test stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2021-09, Vol.108 (3), p.741-748
Hauptverfasser: He, Yinqiu, Meng, Bo, Zeng, Zhenghao, Xu, Gongjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 3
container_start_page 741
container_title Biometrika
container_volume 108
creator He, Yinqiu
Meng, Bo
Zeng, Zhenghao
Xu, Gongjun
description Wilks’ theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, researchers have found that the conventional Wilks’ phenomenon of the likelihood ratio test statistic often fails. Although new approximations have been proposed in high-dimensional settings, there still lacks a clear statistical guideline regarding how to choose between the conventional and newly proposed approximations, especially for moderate-dimensional data. To address this issue, we develop the necessary and sufficient phase transition conditions for Wilks’ phenomenon under popular tests on multivariate mean and covariance structures. Moreover, we provide an in-depth analysis of the accuracy of chi-squared approximations by deriving their asymptotic biases. These results may provide helpful insights into the use of chi-squared approximations in scientific practices.
doi_str_mv 10.1093/biomet/asaa078
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_asaa078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_biomet_asaa078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-d6b0189eb7119aa6c2c7599fe7bc0bda53ef2d0362629c3f629f4d0e4bf8e0cc3</originalsourceid><addsrcrecordid>eNotj01qwzAUhEVpoW7abde-gJ0nS5atZQn9g0A2LV2aJ_mJqE2kYGnTXa_R6_UkdUg2MwwDH3yM3XOoOWixND7uKS8xIULXX7CCSyUr0XK4ZAUAqEpIKa_ZTUqfx6laVbB6E8q8pfKwxURlnjAkn30MZXTlh999pb-f3_mkMLNDDLfsyuEu0d25F-z96fFt9VKtN8-vq4d1ZbnSuRqVAd5rMh3nGlHZxnat1o46Y8GM2ApyzQhCNarRVrg5nRyBpHE9gbViweoT104xpYnccJj8HqfvgcNwtB1OtsPZVvwDF9xL8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the phase transition of Wilks’ phenomenon</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>He, Yinqiu ; Meng, Bo ; Zeng, Zhenghao ; Xu, Gongjun</creator><creatorcontrib>He, Yinqiu ; Meng, Bo ; Zeng, Zhenghao ; Xu, Gongjun</creatorcontrib><description>Wilks’ theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, researchers have found that the conventional Wilks’ phenomenon of the likelihood ratio test statistic often fails. Although new approximations have been proposed in high-dimensional settings, there still lacks a clear statistical guideline regarding how to choose between the conventional and newly proposed approximations, especially for moderate-dimensional data. To address this issue, we develop the necessary and sufficient phase transition conditions for Wilks’ phenomenon under popular tests on multivariate mean and covariance structures. Moreover, we provide an in-depth analysis of the accuracy of chi-squared approximations by deriving their asymptotic biases. These results may provide helpful insights into the use of chi-squared approximations in scientific practices.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa078</identifier><language>eng</language><ispartof>Biometrika, 2021-09, Vol.108 (3), p.741-748</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-d6b0189eb7119aa6c2c7599fe7bc0bda53ef2d0362629c3f629f4d0e4bf8e0cc3</citedby><cites>FETCH-LOGICAL-c169t-d6b0189eb7119aa6c2c7599fe7bc0bda53ef2d0362629c3f629f4d0e4bf8e0cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Meng, Bo</creatorcontrib><creatorcontrib>Zeng, Zhenghao</creatorcontrib><creatorcontrib>Xu, Gongjun</creatorcontrib><title>On the phase transition of Wilks’ phenomenon</title><title>Biometrika</title><description>Wilks’ theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, researchers have found that the conventional Wilks’ phenomenon of the likelihood ratio test statistic often fails. Although new approximations have been proposed in high-dimensional settings, there still lacks a clear statistical guideline regarding how to choose between the conventional and newly proposed approximations, especially for moderate-dimensional data. To address this issue, we develop the necessary and sufficient phase transition conditions for Wilks’ phenomenon under popular tests on multivariate mean and covariance structures. Moreover, we provide an in-depth analysis of the accuracy of chi-squared approximations by deriving their asymptotic biases. These results may provide helpful insights into the use of chi-squared approximations in scientific practices.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotj01qwzAUhEVpoW7abde-gJ0nS5atZQn9g0A2LV2aJ_mJqE2kYGnTXa_R6_UkdUg2MwwDH3yM3XOoOWixND7uKS8xIULXX7CCSyUr0XK4ZAUAqEpIKa_ZTUqfx6laVbB6E8q8pfKwxURlnjAkn30MZXTlh999pb-f3_mkMLNDDLfsyuEu0d25F-z96fFt9VKtN8-vq4d1ZbnSuRqVAd5rMh3nGlHZxnat1o46Y8GM2ApyzQhCNarRVrg5nRyBpHE9gbViweoT104xpYnccJj8HqfvgcNwtB1OtsPZVvwDF9xL8g</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>He, Yinqiu</creator><creator>Meng, Bo</creator><creator>Zeng, Zhenghao</creator><creator>Xu, Gongjun</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>On the phase transition of Wilks’ phenomenon</title><author>He, Yinqiu ; Meng, Bo ; Zeng, Zhenghao ; Xu, Gongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-d6b0189eb7119aa6c2c7599fe7bc0bda53ef2d0362629c3f629f4d0e4bf8e0cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Meng, Bo</creatorcontrib><creatorcontrib>Zeng, Zhenghao</creatorcontrib><creatorcontrib>Xu, Gongjun</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yinqiu</au><au>Meng, Bo</au><au>Zeng, Zhenghao</au><au>Xu, Gongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the phase transition of Wilks’ phenomenon</atitle><jtitle>Biometrika</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>108</volume><issue>3</issue><spage>741</spage><epage>748</epage><pages>741-748</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Wilks’ theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, researchers have found that the conventional Wilks’ phenomenon of the likelihood ratio test statistic often fails. Although new approximations have been proposed in high-dimensional settings, there still lacks a clear statistical guideline regarding how to choose between the conventional and newly proposed approximations, especially for moderate-dimensional data. To address this issue, we develop the necessary and sufficient phase transition conditions for Wilks’ phenomenon under popular tests on multivariate mean and covariance structures. Moreover, we provide an in-depth analysis of the accuracy of chi-squared approximations by deriving their asymptotic biases. These results may provide helpful insights into the use of chi-squared approximations in scientific practices.</abstract><doi>10.1093/biomet/asaa078</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2021-09, Vol.108 (3), p.741-748
issn 0006-3444
1464-3510
language eng
recordid cdi_crossref_primary_10_1093_biomet_asaa078
source Oxford University Press Journals All Titles (1996-Current)
title On the phase transition of Wilks’ phenomenon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20phase%20transition%20of%20Wilks%E2%80%99%20phenomenon&rft.jtitle=Biometrika&rft.au=He,%20Yinqiu&rft.date=2021-09-01&rft.volume=108&rft.issue=3&rft.spage=741&rft.epage=748&rft.pages=741-748&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa078&rft_dat=%3Ccrossref%3E10_1093_biomet_asaa078%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true