Increased individual homozygosity is correlated with low fitness in a fragmented lizard population

Abstract Isolation owing to anthropogenic habitat fragmentation is expected to increase the homozygosity of individuals, which might reduce their fitness as a result of inbreeding depression. Using samples from a fragmented population of the lizard Psammodromus algirus, for which we had data about t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological journal of the Linnean Society 2019-12, Vol.128 (4), p.952-962
Hauptverfasser: Pérez-Tris, Javier, Llanos-Garrido, Alejandro, Bloor, Paul, Carbonell, Roberto, Tellería, José Luis, Santos, Tomás, Díaz, José A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Isolation owing to anthropogenic habitat fragmentation is expected to increase the homozygosity of individuals, which might reduce their fitness as a result of inbreeding depression. Using samples from a fragmented population of the lizard Psammodromus algirus, for which we had data about two correlates of fitness, we genotyped individuals for six microsatellite loci that correctly capture genome-wide individual homozygosity of these lizards (as validated with an independent sample of lizards genotyped for both these microsatellites and > 70 000 single nucleotide polymorphisms). Our data revealed genetic structure at a very small geographical scale, which was compatible with restricted gene flow among populations disconnected in a matrix of inhospitable habitat. Lizards from the same fragment were genetically more related to one another than expected by chance, and individual homozygosity was greater in small than in large fragments. Within fragments, individual homozygosity was negatively associated with adult body size and clutch mass, revealing a link among reduced gene flow, increased homozygosity and lowered fitness that might reduce population viability deterministically. Our results contribute to mounting evidence of the impact of the loss of genetic diversity on fragmented wild populations.
ISSN:0024-4066
1095-8312
DOI:10.1093/biolinnean/blz144