No bounded geometry wandering domains for sufficiently regular automorphisms
A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assum...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Transactions of the American Mathematical Society |
container_volume | |
creator | Merenkov, Sergei |
description | A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains. |
doi_str_mv | 10.1090/tran/9281 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_9281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_9281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-1aac84ad75622c20e917b3cb7d8d44e3e82513f6f5724ddbacdb803b1eb253b53</originalsourceid><addsrcrecordid>eNot0EtLxDAYheEgCtbRhf8gWxd1vtzadCmDNyi60XXJtUbaZkhapP_eKbo6vJuzeBC6JXBPoIH9nNS0b6gkZ6ggIGVZSQHnqAAAWjYNry_RVc7fpwQuqwK1bxHruEzWWdy7OLo5rfhHnTqFqcc2jipMGfuYcF68Dya4aR5WnFy_DCphtcxxjOn4FfKYr9GFV0N2N_-7Q59Pjx-Hl7J9f349PLSlIaSZS6KUkVzZWlSUGgquIbVmRtdWWs4dc5IKwnzlRU25tVoZqyUwTZymgmnBduju79ekmHNyvjumMKq0dgS6jaHbGLqNgf0CN95S3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>No bounded geometry wandering domains for sufficiently regular automorphisms</title><source>American Mathematical Society Journals</source><creator>Merenkov, Sergei</creator><creatorcontrib>Merenkov, Sergei</creatorcontrib><description>A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/9281</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-1aac84ad75622c20e917b3cb7d8d44e3e82513f6f5724ddbacdb803b1eb253b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Merenkov, Sergei</creatorcontrib><title>No bounded geometry wandering domains for sufficiently regular automorphisms</title><title>Transactions of the American Mathematical Society</title><description>A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0EtLxDAYheEgCtbRhf8gWxd1vtzadCmDNyi60XXJtUbaZkhapP_eKbo6vJuzeBC6JXBPoIH9nNS0b6gkZ6ggIGVZSQHnqAAAWjYNry_RVc7fpwQuqwK1bxHruEzWWdy7OLo5rfhHnTqFqcc2jipMGfuYcF68Dya4aR5WnFy_DCphtcxxjOn4FfKYr9GFV0N2N_-7Q59Pjx-Hl7J9f349PLSlIaSZS6KUkVzZWlSUGgquIbVmRtdWWs4dc5IKwnzlRU25tVoZqyUwTZymgmnBduju79ekmHNyvjumMKq0dgS6jaHbGLqNgf0CN95S3g</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Merenkov, Sergei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241017</creationdate><title>No bounded geometry wandering domains for sufficiently regular automorphisms</title><author>Merenkov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-1aac84ad75622c20e917b3cb7d8d44e3e82513f6f5724ddbacdb803b1eb253b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merenkov, Sergei</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merenkov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No bounded geometry wandering domains for sufficiently regular automorphisms</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2024-10-17</date><risdate>2024</risdate><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.</abstract><doi>10.1090/tran/9281</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2024-10 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_9281 |
source | American Mathematical Society Journals |
title | No bounded geometry wandering domains for sufficiently regular automorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20bounded%20geometry%20wandering%20domains%20for%20sufficiently%20regular%20automorphisms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Merenkov,%20Sergei&rft.date=2024-10-17&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/9281&rft_dat=%3Ccrossref%3E10_1090_tran_9281%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |