No bounded geometry wandering domains for sufficiently regular automorphisms

A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-10
1. Verfasser: Merenkov, Sergei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Transactions of the American Mathematical Society
container_volume
creator Merenkov, Sergei
description A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.
doi_str_mv 10.1090/tran/9281
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_9281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_9281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-1aac84ad75622c20e917b3cb7d8d44e3e82513f6f5724ddbacdb803b1eb253b53</originalsourceid><addsrcrecordid>eNot0EtLxDAYheEgCtbRhf8gWxd1vtzadCmDNyi60XXJtUbaZkhapP_eKbo6vJuzeBC6JXBPoIH9nNS0b6gkZ6ggIGVZSQHnqAAAWjYNry_RVc7fpwQuqwK1bxHruEzWWdy7OLo5rfhHnTqFqcc2jipMGfuYcF68Dya4aR5WnFy_DCphtcxxjOn4FfKYr9GFV0N2N_-7Q59Pjx-Hl7J9f349PLSlIaSZS6KUkVzZWlSUGgquIbVmRtdWWs4dc5IKwnzlRU25tVoZqyUwTZymgmnBduju79ekmHNyvjumMKq0dgS6jaHbGLqNgf0CN95S3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>No bounded geometry wandering domains for sufficiently regular automorphisms</title><source>American Mathematical Society Journals</source><creator>Merenkov, Sergei</creator><creatorcontrib>Merenkov, Sergei</creatorcontrib><description>A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/9281</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-1aac84ad75622c20e917b3cb7d8d44e3e82513f6f5724ddbacdb803b1eb253b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Merenkov, Sergei</creatorcontrib><title>No bounded geometry wandering domains for sufficiently regular automorphisms</title><title>Transactions of the American Mathematical Society</title><description>A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0EtLxDAYheEgCtbRhf8gWxd1vtzadCmDNyi60XXJtUbaZkhapP_eKbo6vJuzeBC6JXBPoIH9nNS0b6gkZ6ggIGVZSQHnqAAAWjYNry_RVc7fpwQuqwK1bxHruEzWWdy7OLo5rfhHnTqFqcc2jipMGfuYcF68Dya4aR5WnFy_DCphtcxxjOn4FfKYr9GFV0N2N_-7Q59Pjx-Hl7J9f349PLSlIaSZS6KUkVzZWlSUGgquIbVmRtdWWs4dc5IKwnzlRU25tVoZqyUwTZymgmnBduju79ekmHNyvjumMKq0dgS6jaHbGLqNgf0CN95S3g</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Merenkov, Sergei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241017</creationdate><title>No bounded geometry wandering domains for sufficiently regular automorphisms</title><author>Merenkov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-1aac84ad75622c20e917b3cb7d8d44e3e82513f6f5724ddbacdb803b1eb253b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merenkov, Sergei</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merenkov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No bounded geometry wandering domains for sufficiently regular automorphisms</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2024-10-17</date><risdate>2024</risdate><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>A question whether sufficiently regular manifold automorphisms may have wandering domains with controlled geometry is answered in the negative for quasiconformal or smooth homeomorphisms of n n -tori, n ≥ 2 n\ge 2 , and hyperbolic surfaces. Besides control on geometry of wandering domains, the assumptions are either analytic, e.g., minimal sets having measure zero or supporting invariant conformal structures, or geometric, such as uniform relative separation of wandering domains.</abstract><doi>10.1090/tran/9281</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2024-10
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_9281
source American Mathematical Society Journals
title No bounded geometry wandering domains for sufficiently regular automorphisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20bounded%20geometry%20wandering%20domains%20for%20sufficiently%20regular%20automorphisms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Merenkov,%20Sergei&rft.date=2024-10-17&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/9281&rft_dat=%3Ccrossref%3E10_1090_tran_9281%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true