Sharp quantitative stability of the Möbius group among sphere-valued maps in arbitrary dimension

In this work we prove a sharp quantitative form of Liouville’s theorem, which asserts that, for all n ≥ 3 n\geq 3 , the weakly conformal maps of S n − 1 \mathbb S^{n-1} with degree ± 1 \pm 1 are Möbius transformations. In the case n = 3 n=3 this estimate was first obtained by Bernand-Mantel, Muratov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-12
Hauptverfasser: Guerra, André, Lamy, Xavier, Zemas, Konstantinos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!