The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms
We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, o...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Transactions of the American Mathematical Society |
container_volume | |
creator | Charatonik, Włodzimierz Kwiatkowska, Aleksandra Roe, Robert |
description | We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it. |
doi_str_mv | 10.1090/tran/9258 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_9258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_9258</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1090_tran_92583</originalsourceid><addsrcrecordid>eNqVjztOAzEURa0IpAyfgh28lmLIm5CPp0ZELCC9ZU3szIv8k58DypKoWEQ2xlhiA1RXR_c0R4inDl867HFRsg6LfrmWM9F0KGW7kWu8EQ0iLtu-X23n4o75NCGu5KYRx_1oIOV4MkOhTwO7rK8_zNdvcOSpQLRQJsNqT-5SSTsHQwxh8s0BLAUqBo5Zp5Hhi8pYT-vOJhQwiXzMaST2_CBurXZsHv_2Xjzv3vdvH-2QI3M2VqVMXueL6lDVElVLVC15_Y_7C0q1U48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</title><source>American Mathematical Society Publications</source><creator>Charatonik, Włodzimierz ; Kwiatkowska, Aleksandra ; Roe, Robert</creator><creatorcontrib>Charatonik, Włodzimierz ; Kwiatkowska, Aleksandra ; Roe, Robert</creatorcontrib><description>We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/9258</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1090_tran_92583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Charatonik, Włodzimierz</creatorcontrib><creatorcontrib>Kwiatkowska, Aleksandra</creatorcontrib><creatorcontrib>Roe, Robert</creatorcontrib><title>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</title><title>Transactions of the American Mathematical Society</title><description>We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjztOAzEURa0IpAyfgh28lmLIm5CPp0ZELCC9ZU3szIv8k58DypKoWEQ2xlhiA1RXR_c0R4inDl867HFRsg6LfrmWM9F0KGW7kWu8EQ0iLtu-X23n4o75NCGu5KYRx_1oIOV4MkOhTwO7rK8_zNdvcOSpQLRQJsNqT-5SSTsHQwxh8s0BLAUqBo5Zp5Hhi8pYT-vOJhQwiXzMaST2_CBurXZsHv_2Xjzv3vdvH-2QI3M2VqVMXueL6lDVElVLVC15_Y_7C0q1U48</recordid><startdate>20241227</startdate><enddate>20241227</enddate><creator>Charatonik, Włodzimierz</creator><creator>Kwiatkowska, Aleksandra</creator><creator>Roe, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241227</creationdate><title>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</title><author>Charatonik, Włodzimierz ; Kwiatkowska, Aleksandra ; Roe, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1090_tran_92583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charatonik, Włodzimierz</creatorcontrib><creatorcontrib>Kwiatkowska, Aleksandra</creatorcontrib><creatorcontrib>Roe, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charatonik, Włodzimierz</au><au>Kwiatkowska, Aleksandra</au><au>Roe, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2024-12-27</date><risdate>2024</risdate><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.</abstract><doi>10.1090/tran/9258</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2024-12 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_9258 |
source | American Mathematical Society Publications |
title | The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20projective%20Fra%C3%AFss%C3%A9%20limit%20of%20the%20family%20of%20all%20connected%20finite%20graphs%20with%20confluent%20epimorphisms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Charatonik,%20W%C5%82odzimierz&rft.date=2024-12-27&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/9258&rft_dat=%3Ccrossref%3E10_1090_tran_9258%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |