The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms

We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-12
Hauptverfasser: Charatonik, Włodzimierz, Kwiatkowska, Aleksandra, Roe, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Transactions of the American Mathematical Society
container_volume
creator Charatonik, Włodzimierz
Kwiatkowska, Aleksandra
Roe, Robert
description We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.
doi_str_mv 10.1090/tran/9258
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_9258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_9258</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1090_tran_92583</originalsourceid><addsrcrecordid>eNqVjztOAzEURa0IpAyfgh28lmLIm5CPp0ZELCC9ZU3szIv8k58DypKoWEQ2xlhiA1RXR_c0R4inDl867HFRsg6LfrmWM9F0KGW7kWu8EQ0iLtu-X23n4o75NCGu5KYRx_1oIOV4MkOhTwO7rK8_zNdvcOSpQLRQJsNqT-5SSTsHQwxh8s0BLAUqBo5Zp5Hhi8pYT-vOJhQwiXzMaST2_CBurXZsHv_2Xjzv3vdvH-2QI3M2VqVMXueL6lDVElVLVC15_Y_7C0q1U48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</title><source>American Mathematical Society Publications</source><creator>Charatonik, Włodzimierz ; Kwiatkowska, Aleksandra ; Roe, Robert</creator><creatorcontrib>Charatonik, Włodzimierz ; Kwiatkowska, Aleksandra ; Roe, Robert</creatorcontrib><description>We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/9258</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1090_tran_92583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Charatonik, Włodzimierz</creatorcontrib><creatorcontrib>Kwiatkowska, Aleksandra</creatorcontrib><creatorcontrib>Roe, Robert</creatorcontrib><title>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</title><title>Transactions of the American Mathematical Society</title><description>We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjztOAzEURa0IpAyfgh28lmLIm5CPp0ZELCC9ZU3szIv8k58DypKoWEQ2xlhiA1RXR_c0R4inDl867HFRsg6LfrmWM9F0KGW7kWu8EQ0iLtu-X23n4o75NCGu5KYRx_1oIOV4MkOhTwO7rK8_zNdvcOSpQLRQJsNqT-5SSTsHQwxh8s0BLAUqBo5Zp5Hhi8pYT-vOJhQwiXzMaST2_CBurXZsHv_2Xjzv3vdvH-2QI3M2VqVMXueL6lDVElVLVC15_Y_7C0q1U48</recordid><startdate>20241227</startdate><enddate>20241227</enddate><creator>Charatonik, Włodzimierz</creator><creator>Kwiatkowska, Aleksandra</creator><creator>Roe, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241227</creationdate><title>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</title><author>Charatonik, Włodzimierz ; Kwiatkowska, Aleksandra ; Roe, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1090_tran_92583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charatonik, Włodzimierz</creatorcontrib><creatorcontrib>Kwiatkowska, Aleksandra</creatorcontrib><creatorcontrib>Roe, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charatonik, Włodzimierz</au><au>Kwiatkowska, Aleksandra</au><au>Roe, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2024-12-27</date><risdate>2024</risdate><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We investigate the projective Fraïssé family of finite connected graphs with confluent epimorphisms and the continuum obtained as the topological realization of its projective Fraïssé limit. This continuum was unknown before. We prove that it is indecomposable, but not hereditarily indecomposable, one-dimensional, Kelley, pointwise self-homeomorphic, but not homogeneous. It is hereditarily unicoherent and each point is the top of the Cantor fan. Moreover, the universal solenoid, the universal pseudo-solenoid, and the pseudo-arc may be embedded in it.</abstract><doi>10.1090/tran/9258</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2024-12
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_9258
source American Mathematical Society Publications
title The projective Fraïssé limit of the family of all connected finite graphs with confluent epimorphisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20projective%20Fra%C3%AFss%C3%A9%20limit%20of%20the%20family%20of%20all%20connected%20finite%20graphs%20with%20confluent%20epimorphisms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Charatonik,%20W%C5%82odzimierz&rft.date=2024-12-27&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/9258&rft_dat=%3Ccrossref%3E10_1090_tran_9258%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true