Regularity, singularities and h -vector of graded algebras

Let R be a standard graded algebra over a field. We investigate how the singularities of \operatorname {Spec} R or \operatorname {Proj} R affect the h-vector of R, which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R satisfies S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-03, Vol.377 (3), p.2149-2167
Hauptverfasser: Dao, Hailong, Ma, Linquan, Varbaro, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 3
container_start_page 2149
container_title Transactions of the American Mathematical Society
container_volume 377
creator Dao, Hailong
Ma, Linquan
Varbaro, Matteo
description Let R be a standard graded algebra over a field. We investigate how the singularities of \operatorname {Spec} R or \operatorname {Proj} R affect the h-vector of R, which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R satisfies Serre’s condition (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F-pure), then h_0, …, h_r\geq 0. Furthermore the multiplicity of R is at least h_0+h_1+\dots +h_{r-1}. We also prove that equality in many cases forces R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F-pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others.
doi_str_mv 10.1090/tran/9089
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_9089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_9089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-478e1097c10c22db6896cfa945ddb387d96584682530d27d22e1a2526a045be33</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEcX_oMs3AjGeUmT9MWdDH7BgCC6Lq9NWiszrSRVmH9vy8za1eXC4XIPY5cSbiU4WI6R-qUDdEcsk4AoLBo4ZhkAKOGcLk7ZWUpfUwWNNmN3b6H92VDsxt0NT11_KF1InHrPP7n4DfU4RD40vI3kg-e0aUMVKZ2zk4Y2KVwccsE-Hh_eV89i_fr0srpfC1ISR6ELDNO1opZQK-Uri87WDTltvK9yLLyzBrVFZXLwqvBKBUnKKEugTRXyfMGu97t1HFKKoSm_Y7eluCsllLN0OUuXs_TEXu1Z2qZ_sD-TOlU2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularity, singularities and h -vector of graded algebras</title><source>American Mathematical Society Publications</source><creator>Dao, Hailong ; Ma, Linquan ; Varbaro, Matteo</creator><creatorcontrib>Dao, Hailong ; Ma, Linquan ; Varbaro, Matteo</creatorcontrib><description>Let R be a standard graded algebra over a field. We investigate how the singularities of \operatorname {Spec} R or \operatorname {Proj} R affect the h-vector of R, which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R satisfies Serre’s condition (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F-pure), then h_0, …, h_r\geq 0. Furthermore the multiplicity of R is at least h_0+h_1+\dots +h_{r-1}. We also prove that equality in many cases forces R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F-pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/9089</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2024-03, Vol.377 (3), p.2149-2167</ispartof><rights>Copyright 2024 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a218t-478e1097c10c22db6896cfa945ddb387d96584682530d27d22e1a2526a045be33</cites><orcidid>0000-0001-8109-9724 ; 0000-0002-7452-8639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2024-377-03/S0002-9947-2024-09089-X/S0002-9947-2024-09089-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2024-377-03/S0002-9947-2024-09089-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23309,27903,27904,77582,77592</link.rule.ids></links><search><creatorcontrib>Dao, Hailong</creatorcontrib><creatorcontrib>Ma, Linquan</creatorcontrib><creatorcontrib>Varbaro, Matteo</creatorcontrib><title>Regularity, singularities and h -vector of graded algebras</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>Let R be a standard graded algebra over a field. We investigate how the singularities of \operatorname {Spec} R or \operatorname {Proj} R affect the h-vector of R, which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R satisfies Serre’s condition (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F-pure), then h_0, …, h_r\geq 0. Furthermore the multiplicity of R is at least h_0+h_1+\dots +h_{r-1}. We also prove that equality in many cases forces R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F-pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEcX_oMs3AjGeUmT9MWdDH7BgCC6Lq9NWiszrSRVmH9vy8za1eXC4XIPY5cSbiU4WI6R-qUDdEcsk4AoLBo4ZhkAKOGcLk7ZWUpfUwWNNmN3b6H92VDsxt0NT11_KF1InHrPP7n4DfU4RD40vI3kg-e0aUMVKZ2zk4Y2KVwccsE-Hh_eV89i_fr0srpfC1ISR6ELDNO1opZQK-Uri87WDTltvK9yLLyzBrVFZXLwqvBKBUnKKEugTRXyfMGu97t1HFKKoSm_Y7eluCsllLN0OUuXs_TEXu1Z2qZ_sD-TOlU2</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Dao, Hailong</creator><creator>Ma, Linquan</creator><creator>Varbaro, Matteo</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8109-9724</orcidid><orcidid>https://orcid.org/0000-0002-7452-8639</orcidid></search><sort><creationdate>20240301</creationdate><title>Regularity, singularities and h -vector of graded algebras</title><author>Dao, Hailong ; Ma, Linquan ; Varbaro, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-478e1097c10c22db6896cfa945ddb387d96584682530d27d22e1a2526a045be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dao, Hailong</creatorcontrib><creatorcontrib>Ma, Linquan</creatorcontrib><creatorcontrib>Varbaro, Matteo</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dao, Hailong</au><au>Ma, Linquan</au><au>Varbaro, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity, singularities and h -vector of graded algebras</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>377</volume><issue>3</issue><spage>2149</spage><epage>2167</epage><pages>2149-2167</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Let R be a standard graded algebra over a field. We investigate how the singularities of \operatorname {Spec} R or \operatorname {Proj} R affect the h-vector of R, which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R satisfies Serre’s condition (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F-pure), then h_0, …, h_r\geq 0. Furthermore the multiplicity of R is at least h_0+h_1+\dots +h_{r-1}. We also prove that equality in many cases forces R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F-pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/9089</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8109-9724</orcidid><orcidid>https://orcid.org/0000-0002-7452-8639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2024-03, Vol.377 (3), p.2149-2167
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_9089
source American Mathematical Society Publications
subjects Research article
title Regularity, singularities and h -vector of graded algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity,%20singularities%20and%20h%20-vector%20of%20graded%20algebras&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Dao,%20Hailong&rft.date=2024-03-01&rft.volume=377&rft.issue=3&rft.spage=2149&rft.epage=2167&rft.pages=2149-2167&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/9089&rft_dat=%3Cams_cross%3E10_1090_tran_9089%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true