A decomposition theorem of surface vector fields and spectral structure of the Neumann-Poincaré operator in elasticity

We prove that the space of vector fields on the boundary of a bounded domain with the Lipschitz boundary in three dimensions is decomposed into three subspaces: elements of the first one extend to inside the domain as divergence-free and rotation-free vector fields, the second one to the outside as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-03
Hauptverfasser: Fukushima, Shota, Ji, Yong-Gwan, Kang, Hyeonbae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!