On Hermitian manifolds whose Chern connection is Ambrose-Singer
We consider the class of compact Hermitian manifolds whose Chern connection is Ambrose-Singer, namely, it has parallel torsion and curvature. We prove structure theorems for such manifolds.
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2023-06, Vol.376 (9), p.6681-6707 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6707 |
---|---|
container_issue | 9 |
container_start_page | 6681 |
container_title | Transactions of the American Mathematical Society |
container_volume | 376 |
creator | Ni, Lei Zheng, Fangyang |
description | We consider the class of compact Hermitian manifolds whose Chern connection is Ambrose-Singer, namely, it has parallel torsion and curvature. We prove structure theorems for such manifolds. |
doi_str_mv | 10.1090/tran/8956 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8956</sourcerecordid><originalsourceid>FETCH-LOGICAL-a253t-b71d8c53e319b665c0bc6531f31a9698e453644d1675c65d22590b119a9901353</originalsourceid><addsrcrecordid>eNp9j0FLwzAYhoMoWDcP_oMcvHiI-76mSZOTjOKcMNjBeS5pmrrImkpSEP-9LfPs6eXjffheHkLuEB4RNKzGaMJKaSEvSIagFJNKwCXJACBnWhflNblJ6XM6oVAyI0_7QLcu9n70JtDeBN8NpzbR7-OQHK2OLgZqhxCcHf0QqE903Tdx6tibDx8uLslVZ07J3f7lgrxvng_Vlu32L6_VesdMLvjImhJbZQV3HHUjpbDQWCk4dhyNllq5QnBZFC3KUkxFm-dCQ4OojdaAXPAFeTj_tdN4iq6rv6LvTfypEerZvJ7N69l8Yu_PrOnTP9gvcXZWnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Hermitian manifolds whose Chern connection is Ambrose-Singer</title><source>American Mathematical Society Publications</source><creator>Ni, Lei ; Zheng, Fangyang</creator><creatorcontrib>Ni, Lei ; Zheng, Fangyang</creatorcontrib><description>We consider the class of compact Hermitian manifolds whose Chern connection is Ambrose-Singer, namely, it has parallel torsion and curvature. We prove structure theorems for such manifolds.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8956</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2023-06, Vol.376 (9), p.6681-6707</ispartof><rights>Copyright 2023 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a253t-b71d8c53e319b665c0bc6531f31a9698e453644d1675c65d22590b119a9901353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2023-376-09/S0002-9947-2023-08956-5/S0002-9947-2023-08956-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2023-376-09/S0002-9947-2023-08956-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77579,77589</link.rule.ids></links><search><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><title>On Hermitian manifolds whose Chern connection is Ambrose-Singer</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>We consider the class of compact Hermitian manifolds whose Chern connection is Ambrose-Singer, namely, it has parallel torsion and curvature. We prove structure theorems for such manifolds.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLwzAYhoMoWDcP_oMcvHiI-76mSZOTjOKcMNjBeS5pmrrImkpSEP-9LfPs6eXjffheHkLuEB4RNKzGaMJKaSEvSIagFJNKwCXJACBnWhflNblJ6XM6oVAyI0_7QLcu9n70JtDeBN8NpzbR7-OQHK2OLgZqhxCcHf0QqE903Tdx6tibDx8uLslVZ07J3f7lgrxvng_Vlu32L6_VesdMLvjImhJbZQV3HHUjpbDQWCk4dhyNllq5QnBZFC3KUkxFm-dCQ4OojdaAXPAFeTj_tdN4iq6rv6LvTfypEerZvJ7N69l8Yu_PrOnTP9gvcXZWnQ</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Ni, Lei</creator><creator>Zheng, Fangyang</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230621</creationdate><title>On Hermitian manifolds whose Chern connection is Ambrose-Singer</title><author>Ni, Lei ; Zheng, Fangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a253t-b71d8c53e319b665c0bc6531f31a9698e453644d1675c65d22590b119a9901353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Lei</au><au>Zheng, Fangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Hermitian manifolds whose Chern connection is Ambrose-Singer</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2023-06-21</date><risdate>2023</risdate><volume>376</volume><issue>9</issue><spage>6681</spage><epage>6707</epage><pages>6681-6707</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We consider the class of compact Hermitian manifolds whose Chern connection is Ambrose-Singer, namely, it has parallel torsion and curvature. We prove structure theorems for such manifolds.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/8956</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2023-06, Vol.376 (9), p.6681-6707 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_8956 |
source | American Mathematical Society Publications |
subjects | Research article |
title | On Hermitian manifolds whose Chern connection is Ambrose-Singer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Hermitian%20manifolds%20whose%20Chern%20connection%20is%20Ambrose-Singer&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ni,%20Lei&rft.date=2023-06-21&rft.volume=376&rft.issue=9&rft.spage=6681&rft.epage=6707&rft.pages=6681-6707&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8956&rft_dat=%3Cams_cross%3E10_1090_tran_8956%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |