On the number of generators of an algebra over a commutative ring

A theorem of O. Forster says that if R is a noetherian ring of Krull dimension d, then every projective R-module of rank n can be generated by d+n elements. S. Chase and R. Swan subsequently showed that this bound is sharp: there exist examples that cannot be generated by fewer than d+n elements. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-10, Vol.375 (10), p.7277-7321
Hauptverfasser: First, Uriya, Reichstein, Zinovy, Williams, Ben
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7321
container_issue 10
container_start_page 7277
container_title Transactions of the American Mathematical Society
container_volume 375
creator First, Uriya
Reichstein, Zinovy
Williams, Ben
description A theorem of O. Forster says that if R is a noetherian ring of Krull dimension d, then every projective R-module of rank n can be generated by d+n elements. S. Chase and R. Swan subsequently showed that this bound is sharp: there exist examples that cannot be generated by fewer than d+n elements. We view rank-n projective R-modules as R-forms of the non-unital R-algebra R^n where the product of any two elements is 0. The first two authors generalized Forster’s theorem to forms of other algebras (not necessarily commutative, associative or unital); A. Shukla and the third author then showed that this generalized Forster bound is optimal for finite étale algebras. In this paper, we prove new upper and lower bounds on the number of generators of an R-form of a k-algebra, where k is an infinite field and R is a finitely generated k-ring of Krull dimension d. In particular, we show that, contrary to expectations, for most types of algebras, the generalized Forster bound is far from optimal. Our results are particularly detailed in the case of Azumaya algebras. Our proofs are based on reinterpreting the problem as a question about approximating the classifying stack BG, where G is the automorphism group of the algebra in question, by algebraic spaces of a certain type.
doi_str_mv 10.1090/tran/8720
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-1977e6648d74765c2b617b72b3f49bc16cb5830faa42ae321c4bec70c64edb103</originalsourceid><addsrcrecordid>eNp9j09LwzAYh4MoWKcHv0EOXjzUvUnT_DmOoVMY7KLn8iZLa2VNJckGfntb5tnTjwcefvAQcs_giYGBZY4YllpxuCAFA61LqWu4JAUA8NIYoa7JTUpfE4LQsiCrXaD509NwHKyPdGxp54OPmMeYZsJA8dB5G5GOp0lA6sZhOGbM_cnT2Ifully1eEj-7m8X5OPl-X39Wm53m7f1alsiN1UumVHKSyn0Xgkla8etZMoqbqtWGOuYdLbWFbSIgqOvOHPCeqfASeH3lkG1II_nXxfHlKJvm-_YDxh_GgbN3N7M7c3cPrkPZxeH9I_2C2RsWFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the number of generators of an algebra over a commutative ring</title><source>American Mathematical Society Publications</source><creator>First, Uriya ; Reichstein, Zinovy ; Williams, Ben</creator><creatorcontrib>First, Uriya ; Reichstein, Zinovy ; Williams, Ben</creatorcontrib><description>A theorem of O. Forster says that if R is a noetherian ring of Krull dimension d, then every projective R-module of rank n can be generated by d+n elements. S. Chase and R. Swan subsequently showed that this bound is sharp: there exist examples that cannot be generated by fewer than d+n elements. We view rank-n projective R-modules as R-forms of the non-unital R-algebra R^n where the product of any two elements is 0. The first two authors generalized Forster’s theorem to forms of other algebras (not necessarily commutative, associative or unital); A. Shukla and the third author then showed that this generalized Forster bound is optimal for finite étale algebras. In this paper, we prove new upper and lower bounds on the number of generators of an R-form of a k-algebra, where k is an infinite field and R is a finitely generated k-ring of Krull dimension d. In particular, we show that, contrary to expectations, for most types of algebras, the generalized Forster bound is far from optimal. Our results are particularly detailed in the case of Azumaya algebras. Our proofs are based on reinterpreting the problem as a question about approximating the classifying stack BG, where G is the automorphism group of the algebra in question, by algebraic spaces of a certain type.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8720</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2022-10, Vol.375 (10), p.7277-7321</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-1977e6648d74765c2b617b72b3f49bc16cb5830faa42ae321c4bec70c64edb103</citedby><cites>FETCH-LOGICAL-a293t-1977e6648d74765c2b617b72b3f49bc16cb5830faa42ae321c4bec70c64edb103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-10/S0002-9947-2022-08720-1/S0002-9947-2022-08720-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-10/S0002-9947-2022-08720-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23308,27903,27904,77583,77593</link.rule.ids></links><search><creatorcontrib>First, Uriya</creatorcontrib><creatorcontrib>Reichstein, Zinovy</creatorcontrib><creatorcontrib>Williams, Ben</creatorcontrib><title>On the number of generators of an algebra over a commutative ring</title><title>Transactions of the American Mathematical Society</title><description>A theorem of O. Forster says that if R is a noetherian ring of Krull dimension d, then every projective R-module of rank n can be generated by d+n elements. S. Chase and R. Swan subsequently showed that this bound is sharp: there exist examples that cannot be generated by fewer than d+n elements. We view rank-n projective R-modules as R-forms of the non-unital R-algebra R^n where the product of any two elements is 0. The first two authors generalized Forster’s theorem to forms of other algebras (not necessarily commutative, associative or unital); A. Shukla and the third author then showed that this generalized Forster bound is optimal for finite étale algebras. In this paper, we prove new upper and lower bounds on the number of generators of an R-form of a k-algebra, where k is an infinite field and R is a finitely generated k-ring of Krull dimension d. In particular, we show that, contrary to expectations, for most types of algebras, the generalized Forster bound is far from optimal. Our results are particularly detailed in the case of Azumaya algebras. Our proofs are based on reinterpreting the problem as a question about approximating the classifying stack BG, where G is the automorphism group of the algebra in question, by algebraic spaces of a certain type.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j09LwzAYh4MoWKcHv0EOXjzUvUnT_DmOoVMY7KLn8iZLa2VNJckGfntb5tnTjwcefvAQcs_giYGBZY4YllpxuCAFA61LqWu4JAUA8NIYoa7JTUpfE4LQsiCrXaD509NwHKyPdGxp54OPmMeYZsJA8dB5G5GOp0lA6sZhOGbM_cnT2Ifully1eEj-7m8X5OPl-X39Wm53m7f1alsiN1UumVHKSyn0Xgkla8etZMoqbqtWGOuYdLbWFbSIgqOvOHPCeqfASeH3lkG1II_nXxfHlKJvm-_YDxh_GgbN3N7M7c3cPrkPZxeH9I_2C2RsWFk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>First, Uriya</creator><creator>Reichstein, Zinovy</creator><creator>Williams, Ben</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>On the number of generators of an algebra over a commutative ring</title><author>First, Uriya ; Reichstein, Zinovy ; Williams, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-1977e6648d74765c2b617b72b3f49bc16cb5830faa42ae321c4bec70c64edb103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>First, Uriya</creatorcontrib><creatorcontrib>Reichstein, Zinovy</creatorcontrib><creatorcontrib>Williams, Ben</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>First, Uriya</au><au>Reichstein, Zinovy</au><au>Williams, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of generators of an algebra over a commutative ring</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>375</volume><issue>10</issue><spage>7277</spage><epage>7321</epage><pages>7277-7321</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>A theorem of O. Forster says that if R is a noetherian ring of Krull dimension d, then every projective R-module of rank n can be generated by d+n elements. S. Chase and R. Swan subsequently showed that this bound is sharp: there exist examples that cannot be generated by fewer than d+n elements. We view rank-n projective R-modules as R-forms of the non-unital R-algebra R^n where the product of any two elements is 0. The first two authors generalized Forster’s theorem to forms of other algebras (not necessarily commutative, associative or unital); A. Shukla and the third author then showed that this generalized Forster bound is optimal for finite étale algebras. In this paper, we prove new upper and lower bounds on the number of generators of an R-form of a k-algebra, where k is an infinite field and R is a finitely generated k-ring of Krull dimension d. In particular, we show that, contrary to expectations, for most types of algebras, the generalized Forster bound is far from optimal. Our results are particularly detailed in the case of Azumaya algebras. Our proofs are based on reinterpreting the problem as a question about approximating the classifying stack BG, where G is the automorphism group of the algebra in question, by algebraic spaces of a certain type.</abstract><doi>10.1090/tran/8720</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2022-10, Vol.375 (10), p.7277-7321
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_8720
source American Mathematical Society Publications
title On the number of generators of an algebra over a commutative ring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20generators%20of%20an%20algebra%20over%20a%20commutative%20ring&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=First,%20Uriya&rft.date=2022-10-01&rft.volume=375&rft.issue=10&rft.spage=7277&rft.epage=7321&rft.pages=7277-7321&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8720&rft_dat=%3Cams_cross%3E10_1090_tran_8720%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true