Log-Brunn-Minkowski inequality under symmetry
We prove the log-Brunn-Minkowski conjecture for convex bodies with symmetries to n independent hyperplanes, and discuss the equality case and the uniqueness of the solution of the related case of the logarithmic Minkowski problem. We also clarify a small gap in the known argument classifying the equ...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-08, Vol.375 (8), p.5987-6013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6013 |
---|---|
container_issue | 8 |
container_start_page | 5987 |
container_title | Transactions of the American Mathematical Society |
container_volume | 375 |
creator | Károly J. Böröczky Pavlos Kalantzopoulos |
description | We prove the log-Brunn-Minkowski conjecture for convex bodies with symmetries to n independent hyperplanes, and discuss the equality case and the uniqueness of the solution of the related case of the logarithmic Minkowski problem. We also clarify a small gap in the known argument classifying the equality case of the log-Brunn-Minkowski conjecture for unconditional convex bodies. |
doi_str_mv | 10.1090/tran/8691 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-6b165e145bbd9f14f8f40f1794cc4d8076af98a2524ee484f062d1db8e80ef6f3</originalsourceid><addsrcrecordid>eNp9z0FLxDAQhuEgCtbVg_-gBy8e4k5qmk6OurgqVLzoOaRNInG3qSYt0n9vy3r2NAw8fPAScsnghoGE9RB1WKOQ7IhkDBCpwBKOSQYABZWSV6fkLKXP-QWOIiO07j_ofRxDoC8-7PqftPO5D_Z71Hs_TPkYjI15mrrODnE6JydO75O9-Lsr8r59eNs80fr18XlzV1NdlDhQ0TBRWsbLpjHSMe7QcXCskrxtuUGohHYSZ1twazlyB6IwzDRoEawT7nZFrg-7bexTitapr-g7HSfFQC2daulUS-dsrw5Wd-kf9guMZVJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Log-Brunn-Minkowski inequality under symmetry</title><source>American Mathematical Society Publications</source><creator>Károly J. Böröczky ; Pavlos Kalantzopoulos</creator><creatorcontrib>Károly J. Böröczky ; Pavlos Kalantzopoulos</creatorcontrib><description>We prove the log-Brunn-Minkowski conjecture for convex bodies with symmetries to n independent hyperplanes, and discuss the equality case and the uniqueness of the solution of the related case of the logarithmic Minkowski problem. We also clarify a small gap in the known argument classifying the equality case of the log-Brunn-Minkowski conjecture for unconditional convex bodies.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8691</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2022-08, Vol.375 (8), p.5987-6013</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a258t-6b165e145bbd9f14f8f40f1794cc4d8076af98a2524ee484f062d1db8e80ef6f3</citedby><cites>FETCH-LOGICAL-a258t-6b165e145bbd9f14f8f40f1794cc4d8076af98a2524ee484f062d1db8e80ef6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-08/S0002-9947-2022-08691-8/S0002-9947-2022-08691-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-08/S0002-9947-2022-08691-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23308,27903,27904,77583,77593</link.rule.ids></links><search><creatorcontrib>Károly J. Böröczky</creatorcontrib><creatorcontrib>Pavlos Kalantzopoulos</creatorcontrib><title>Log-Brunn-Minkowski inequality under symmetry</title><title>Transactions of the American Mathematical Society</title><description>We prove the log-Brunn-Minkowski conjecture for convex bodies with symmetries to n independent hyperplanes, and discuss the equality case and the uniqueness of the solution of the related case of the logarithmic Minkowski problem. We also clarify a small gap in the known argument classifying the equality case of the log-Brunn-Minkowski conjecture for unconditional convex bodies.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9z0FLxDAQhuEgCtbVg_-gBy8e4k5qmk6OurgqVLzoOaRNInG3qSYt0n9vy3r2NAw8fPAScsnghoGE9RB1WKOQ7IhkDBCpwBKOSQYABZWSV6fkLKXP-QWOIiO07j_ofRxDoC8-7PqftPO5D_Z71Hs_TPkYjI15mrrODnE6JydO75O9-Lsr8r59eNs80fr18XlzV1NdlDhQ0TBRWsbLpjHSMe7QcXCskrxtuUGohHYSZ1twazlyB6IwzDRoEawT7nZFrg-7bexTitapr-g7HSfFQC2daulUS-dsrw5Wd-kf9guMZVJS</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Károly J. Böröczky</creator><creator>Pavlos Kalantzopoulos</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Log-Brunn-Minkowski inequality under symmetry</title><author>Károly J. Böröczky ; Pavlos Kalantzopoulos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-6b165e145bbd9f14f8f40f1794cc4d8076af98a2524ee484f062d1db8e80ef6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Károly J. Böröczky</creatorcontrib><creatorcontrib>Pavlos Kalantzopoulos</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Károly J. Böröczky</au><au>Pavlos Kalantzopoulos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Log-Brunn-Minkowski inequality under symmetry</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>375</volume><issue>8</issue><spage>5987</spage><epage>6013</epage><pages>5987-6013</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We prove the log-Brunn-Minkowski conjecture for convex bodies with symmetries to n independent hyperplanes, and discuss the equality case and the uniqueness of the solution of the related case of the logarithmic Minkowski problem. We also clarify a small gap in the known argument classifying the equality case of the log-Brunn-Minkowski conjecture for unconditional convex bodies.</abstract><doi>10.1090/tran/8691</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2022-08, Vol.375 (8), p.5987-6013 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_8691 |
source | American Mathematical Society Publications |
title | Log-Brunn-Minkowski inequality under symmetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Log-Brunn-Minkowski%20inequality%20under%20symmetry&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=K%C3%A1roly%20J.%20B%C3%B6r%C3%B6czky&rft.date=2022-08-01&rft.volume=375&rft.issue=8&rft.spage=5987&rft.epage=6013&rft.pages=5987-6013&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8691&rft_dat=%3Cams_cross%3E10_1090_tran_8691%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |