Model theory of proalgebraic groups
We lay the foundations for a model theoretic study of proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The clas...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-03, Vol.374 (3), p.2225-2267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2267 |
---|---|
container_issue | 3 |
container_start_page | 2225 |
container_title | Transactions of the American Mathematical Society |
container_volume | 374 |
creator | Pillay, Anand Wibmer, Michael |
description | We lay the foundations for a model theoretic study of proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The class of diagonalizable proalgebraic groups is analyzed in detail. We show that the theory of a diagonalizable proalgebraic group G is determined by the theory of the base field and the theory of the character group of G. Some initial steps towards a comprehensive study of types are also made. |
doi_str_mv | 10.1090/tran/8304 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8304</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-f5674d98a63c7e52d139f3a6ae7dbb4b74fb7ca1c80ce834295d2aabd37c63273</originalsourceid><addsrcrecordid>eNp9jztLA0EURgdRcI0W_oMFbSw2ufPYeZQSjAoJNlovd14xsnGWmbXIvzdLrK0-PjgcOITcUphTMLAYM34vNAdxRioKWjdSt3BOKgBgjTFCXZKrUr6OF4SWFbnbJB_6evwMKR_qFOshJ-y3wWbcuXqb089QrslFxL6Em7-dkY_V0_vypVm_Pb8uH9cNMqrHJrZSCW80Su5UaJmn3ESOEoPy1gqrRLTKIXUaXNBcMNN6hmg9V05ypviMPJy8LqdScojdkHd7zIeOQjfVdVNdN9Ud2fsTi_vyD_YLmPdOXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model theory of proalgebraic groups</title><source>American Mathematical Society Publications</source><creator>Pillay, Anand ; Wibmer, Michael</creator><creatorcontrib>Pillay, Anand ; Wibmer, Michael</creatorcontrib><description>We lay the foundations for a model theoretic study of proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The class of diagonalizable proalgebraic groups is analyzed in detail. We show that the theory of a diagonalizable proalgebraic group G is determined by the theory of the base field and the theory of the character group of G. Some initial steps towards a comprehensive study of types are also made.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8304</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2021-03, Vol.374 (3), p.2225-2267</ispartof><rights>Copyright 2020, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a218t-f5674d98a63c7e52d139f3a6ae7dbb4b74fb7ca1c80ce834295d2aabd37c63273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2021-374-03/S0002-9947-2020-08304-4/S0002-9947-2020-08304-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2021-374-03/S0002-9947-2020-08304-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77708,77718</link.rule.ids></links><search><creatorcontrib>Pillay, Anand</creatorcontrib><creatorcontrib>Wibmer, Michael</creatorcontrib><title>Model theory of proalgebraic groups</title><title>Transactions of the American Mathematical Society</title><description>We lay the foundations for a model theoretic study of proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The class of diagonalizable proalgebraic groups is analyzed in detail. We show that the theory of a diagonalizable proalgebraic group G is determined by the theory of the base field and the theory of the character group of G. Some initial steps towards a comprehensive study of types are also made.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9jztLA0EURgdRcI0W_oMFbSw2ufPYeZQSjAoJNlovd14xsnGWmbXIvzdLrK0-PjgcOITcUphTMLAYM34vNAdxRioKWjdSt3BOKgBgjTFCXZKrUr6OF4SWFbnbJB_6evwMKR_qFOshJ-y3wWbcuXqb089QrslFxL6Em7-dkY_V0_vypVm_Pb8uH9cNMqrHJrZSCW80Su5UaJmn3ESOEoPy1gqrRLTKIXUaXNBcMNN6hmg9V05ypviMPJy8LqdScojdkHd7zIeOQjfVdVNdN9Ud2fsTi_vyD_YLmPdOXA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Pillay, Anand</creator><creator>Wibmer, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Model theory of proalgebraic groups</title><author>Pillay, Anand ; Wibmer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-f5674d98a63c7e52d139f3a6ae7dbb4b74fb7ca1c80ce834295d2aabd37c63273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillay, Anand</creatorcontrib><creatorcontrib>Wibmer, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillay, Anand</au><au>Wibmer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model theory of proalgebraic groups</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>374</volume><issue>3</issue><spage>2225</spage><epage>2267</epage><pages>2225-2267</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We lay the foundations for a model theoretic study of proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The class of diagonalizable proalgebraic groups is analyzed in detail. We show that the theory of a diagonalizable proalgebraic group G is determined by the theory of the base field and the theory of the character group of G. Some initial steps towards a comprehensive study of types are also made.</abstract><doi>10.1090/tran/8304</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2021-03, Vol.374 (3), p.2225-2267 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_8304 |
source | American Mathematical Society Publications |
title | Model theory of proalgebraic groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20theory%20of%20proalgebraic%20groups&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Pillay,%20Anand&rft.date=2021-03-01&rft.volume=374&rft.issue=3&rft.spage=2225&rft.epage=2267&rft.pages=2225-2267&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8304&rft_dat=%3Cams_cross%3E10_1090_tran_8304%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |