Riccati equations and polynomial dynamics over function fields

Given a function field KK and ϕ∈K[x]\phi \in K[x], we study two finiteness questions related to iteration of ϕ\phi: whether all but finitely many terms of an orbit of ϕ\phi must possess a primitive prime divisor, and whether the Galois groups of iterates of ϕ\phi must have finite index in their natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-12, Vol.373 (3), p.1555-1575
Hauptverfasser: Hindes, Wade, Jones, Rafe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1575
container_issue 3
container_start_page 1555
container_title Transactions of the American Mathematical Society
container_volume 373
creator Hindes, Wade
Jones, Rafe
description Given a function field KK and ϕ∈K[x]\phi \in K[x], we study two finiteness questions related to iteration of ϕ\phi: whether all but finitely many terms of an orbit of ϕ\phi must possess a primitive prime divisor, and whether the Galois groups of iterates of ϕ\phi must have finite index in their natural overgroup Aut⁡(Td)\operatorname {Aut}(T_d), where TdT_d is the infinite tree of iterated preimages of 00 under ϕ\phi. We focus particularly on the case where KK has characteristic pp, where far less is known. We resolve the first question in the affirmative for a large (in particular, Zariski-dense) subset of the space of degree-dd polynomials. The main step in the proof is to rule out certain algebraic relations among points in backwards orbits; these relations are given by a type of first-order differential equation called a Riccati equation. We then apply our result on primitive prime divisors and adapt a method of Looper to produce new families of polynomials in every characteristic for which the second question has an affirmative answer. We also prove that almost all quadratic polynomials over Q(t)\mathbb {Q}(t) have iterates whose Galois group is all of Aut⁡(Td)\operatorname {Aut}(T_d).
doi_str_mv 10.1090/tran/7855
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7855</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-11ff3bacd512d95b217b96415058823a983fced15fe8d483b7568f767b161e2e3</originalsourceid><addsrcrecordid>eNp9j8tKxDAYRoMoWEcXvkEWblzUyZ80t40ggzcYEETXJc0FIm06Jh2hb--Uce3q8MHhg4PQNZA7IJqsp2zSWirOT1AFRKlaKE5OUUUIobXWjTxHF6V8HSZplKjQ_Xu01kwR--_9AWMq2CSHd2M_p3GIpsduTmaItuDxx2cc9skuGg7R965corNg-uKv_rhCn0-PH5uXevv2_Lp52NaGajbVACGwzljHgTrNOwqy06IBTrhSlBmtWLDeAQ9euUaxTnKhghSyAwGeerZCt8dfm8dSsg_tLsfB5LkF0i7h7RLeLuEH9-bomqH8o_0CJ4pYJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Riccati equations and polynomial dynamics over function fields</title><source>American Mathematical Society Publications</source><creator>Hindes, Wade ; Jones, Rafe</creator><creatorcontrib>Hindes, Wade ; Jones, Rafe</creatorcontrib><description>Given a function field KK and ϕ∈K[x]\phi \in K[x], we study two finiteness questions related to iteration of ϕ\phi: whether all but finitely many terms of an orbit of ϕ\phi must possess a primitive prime divisor, and whether the Galois groups of iterates of ϕ\phi must have finite index in their natural overgroup Aut⁡(Td)\operatorname {Aut}(T_d), where TdT_d is the infinite tree of iterated preimages of 00 under ϕ\phi. We focus particularly on the case where KK has characteristic pp, where far less is known. We resolve the first question in the affirmative for a large (in particular, Zariski-dense) subset of the space of degree-dd polynomials. The main step in the proof is to rule out certain algebraic relations among points in backwards orbits; these relations are given by a type of first-order differential equation called a Riccati equation. We then apply our result on primitive prime divisors and adapt a method of Looper to produce new families of polynomials in every characteristic for which the second question has an affirmative answer. We also prove that almost all quadratic polynomials over Q(t)\mathbb {Q}(t) have iterates whose Galois group is all of Aut⁡(Td)\operatorname {Aut}(T_d).</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7855</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2019-12, Vol.373 (3), p.1555-1575</ispartof><rights>Copyright 2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-11ff3bacd512d95b217b96415058823a983fced15fe8d483b7568f767b161e2e3</citedby><orcidid>0000-0002-4840-4616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2020-373-03/S0002-9947-2019-07855-8/S0002-9947-2019-07855-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2020-373-03/S0002-9947-2019-07855-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Hindes, Wade</creatorcontrib><creatorcontrib>Jones, Rafe</creatorcontrib><title>Riccati equations and polynomial dynamics over function fields</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>Given a function field KK and ϕ∈K[x]\phi \in K[x], we study two finiteness questions related to iteration of ϕ\phi: whether all but finitely many terms of an orbit of ϕ\phi must possess a primitive prime divisor, and whether the Galois groups of iterates of ϕ\phi must have finite index in their natural overgroup Aut⁡(Td)\operatorname {Aut}(T_d), where TdT_d is the infinite tree of iterated preimages of 00 under ϕ\phi. We focus particularly on the case where KK has characteristic pp, where far less is known. We resolve the first question in the affirmative for a large (in particular, Zariski-dense) subset of the space of degree-dd polynomials. The main step in the proof is to rule out certain algebraic relations among points in backwards orbits; these relations are given by a type of first-order differential equation called a Riccati equation. We then apply our result on primitive prime divisors and adapt a method of Looper to produce new families of polynomials in every characteristic for which the second question has an affirmative answer. We also prove that almost all quadratic polynomials over Q(t)\mathbb {Q}(t) have iterates whose Galois group is all of Aut⁡(Td)\operatorname {Aut}(T_d).</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxDAYRoMoWEcXvkEWblzUyZ80t40ggzcYEETXJc0FIm06Jh2hb--Uce3q8MHhg4PQNZA7IJqsp2zSWirOT1AFRKlaKE5OUUUIobXWjTxHF6V8HSZplKjQ_Xu01kwR--_9AWMq2CSHd2M_p3GIpsduTmaItuDxx2cc9skuGg7R965corNg-uKv_rhCn0-PH5uXevv2_Lp52NaGajbVACGwzljHgTrNOwqy06IBTrhSlBmtWLDeAQ9euUaxTnKhghSyAwGeerZCt8dfm8dSsg_tLsfB5LkF0i7h7RLeLuEH9-bomqH8o_0CJ4pYJg</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Hindes, Wade</creator><creator>Jones, Rafe</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4840-4616</orcidid></search><sort><creationdate>20191210</creationdate><title>Riccati equations and polynomial dynamics over function fields</title><author>Hindes, Wade ; Jones, Rafe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-11ff3bacd512d95b217b96415058823a983fced15fe8d483b7568f767b161e2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hindes, Wade</creatorcontrib><creatorcontrib>Jones, Rafe</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hindes, Wade</au><au>Jones, Rafe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riccati equations and polynomial dynamics over function fields</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2019-12-10</date><risdate>2019</risdate><volume>373</volume><issue>3</issue><spage>1555</spage><epage>1575</epage><pages>1555-1575</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Given a function field KK and ϕ∈K[x]\phi \in K[x], we study two finiteness questions related to iteration of ϕ\phi: whether all but finitely many terms of an orbit of ϕ\phi must possess a primitive prime divisor, and whether the Galois groups of iterates of ϕ\phi must have finite index in their natural overgroup Aut⁡(Td)\operatorname {Aut}(T_d), where TdT_d is the infinite tree of iterated preimages of 00 under ϕ\phi. We focus particularly on the case where KK has characteristic pp, where far less is known. We resolve the first question in the affirmative for a large (in particular, Zariski-dense) subset of the space of degree-dd polynomials. The main step in the proof is to rule out certain algebraic relations among points in backwards orbits; these relations are given by a type of first-order differential equation called a Riccati equation. We then apply our result on primitive prime divisors and adapt a method of Looper to produce new families of polynomials in every characteristic for which the second question has an affirmative answer. We also prove that almost all quadratic polynomials over Q(t)\mathbb {Q}(t) have iterates whose Galois group is all of Aut⁡(Td)\operatorname {Aut}(T_d).</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/7855</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4840-4616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-12, Vol.373 (3), p.1555-1575
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7855
source American Mathematical Society Publications
subjects Research article
title Riccati equations and polynomial dynamics over function fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riccati%20equations%20and%20polynomial%20dynamics%20over%20function%20fields&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Hindes,%20Wade&rft.date=2019-12-10&rft.volume=373&rft.issue=3&rft.spage=1555&rft.epage=1575&rft.pages=1555-1575&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7855&rft_dat=%3Cams_cross%3E10_1090_tran_7855%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true